Optimal Joint Modulation Classification and Symbol Decoding


Creative Commons License

Kazikli E., DÜLEK B. , Gezici S.

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, cilt.18, ss.2623-2638, 2019 (SCI İndekslerine Giren Dergi) identifier identifier

  • Cilt numarası: 18 Konu: 5
  • Basım Tarihi: 2019
  • Doi Numarası: 10.1109/twc.2019.2906185
  • Dergi Adı: IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS
  • Sayfa Sayıları: ss.2623-2638

Özet

In this paper, modulation classification and symbol decoding problems are jointly considered and optimal strategies are proposed under various settings. In the considered framework, there exist a number of candidate modulation formats and the aim is to decode a sequence of received signals with an unknown modulation scheme. To that aim, two different formulations are proposed. In the first formulation, the prior probabilities of the modulation schemes are assumed to be known and a formulation is proposed under the Bayesian framework. This formulation takes a constrained approach in which the objective function is related to symbol decoding performance whereas the constraint is related to modulation classification performance. The second formulation, on the other hand, addresses the case in which the prior probabilities of the modulation schemes are unknown, and provides a method under the minimax framework. In this case, a constrained approach is employed as well; however, the introduced performance metrics differ from those in the first formulation due to the absence of the prior probabilities of the modulation schemes. Finally, the performance of the proposed methods is illustrated through simulations. It is demonstrated that the proposed techniques improve the introduced symbol detection performance metrics via relaxing the constraint(s) on the modulation classification performance compared with the conventional techniques in a variety of system configurations.