Approximate Solutions of Dirac Equation with Hyperbolic-Type Potential


Creative Commons License

Arda A., Sever R.

COMMUNICATIONS IN THEORETICAL PHYSICS, cilt.64, sa.3, ss.269-273, 2015 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 64 Sayı: 3
  • Basım Tarihi: 2015
  • Doi Numarası: 10.1088/0253-6102/64/3/269
  • Dergi Adı: COMMUNICATIONS IN THEORETICAL PHYSICS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.269-273
  • Anahtar Kelimeler: hyperbolic-type potential, Dirac equation, approximate solution, KLEIN-GORDON EQUATION, SCHRODINGER-EQUATION, BOUND-STATES, PSEUDOSPIN SYMMETRY, SCALAR, VECTOR, SPIN
  • Hacettepe Üniversitesi Adresli: Evet

Özet

The energy eigenvalues of a Dirac particle for the hyperbolic-type potential field have been computed approximately. It is obtained a transcendental function of energy, F(E), by writing in terms of confluent Heun functions. The numerical values of energy are then obtained by fixing the zeros on "E-axis" for both complex functions Re[F(E)] and Im[F(E)].