ON QUASI-DIAGONAL ISOMORPHISMS OF INFINITE AND FINITE TYPE DRAGILEV KOTHE SPACES


Sozen Y.

INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, cilt.40, ss.295-314, 2009 (SCI İndekslerine Giren Dergi) identifier identifier

  • Cilt numarası: 40 Konu: 5
  • Basım Tarihi: 2009
  • Dergi Adı: INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS
  • Sayfa Sayıları: ss.295-314

Özet

Let 1 <= a(n) NE arrow infinity, kappa be a function on the set of positive integers into itself and chi denotes the characteristic function of [0, infinity). We consider the Kothe spaces of type D(infinity) (kappa, gamma, alpha) = kappa([a(pn)) where a(pn) = exp([p + gamma(n)chi(p - kappa(n))]a(n)), p is an element of N, gamma(n) >= 1, D(0) (kappa, gamma, alpha) = kappa([a(pn)]) where a(pn) = exp([-1/p + gamma(n)chi(p - kappa(n))]a(n)), p is an element of N, gamma(n) >= 0 and H(infinity) (kappa, gamma, alpha) = kappa([a(pn)]) where a(pn) = exp([p + gamma(n) min(p, kappa(n))]a(n)), p is an element of N, gamma(n) >= 1. We characterize the quasi-diagonal isomorphisms between these type of spaces. Moreover, we show that these spaces are not identical, in the topological sense.