Investigation of combined effects of propyl paraben and methyl paraben on the hypothalamic-pituitary-adrenal axis in male rats


Inkaya E. N. , BARLAS N.

TOXICOLOGY AND INDUSTRIAL HEALTH, 2022 (Peer-Reviewed Journal) identifier identifier

  • Publication Type: Article / Article
  • Publication Date: 2022
  • Doi Number: 10.1177/07482337221117652
  • Journal Name: TOXICOLOGY AND INDUSTRIAL HEALTH
  • Journal Indexes: Science Citation Index Expanded, Scopus, Academic Search Premier, Aerospace Database, BIOSIS, Communication Abstracts, EMBASE, Environment Index, Food Science & Technology Abstracts, Index Islamicus, MEDLINE, Metadex, Pollution Abstracts, Civil Engineering Abstracts
  • Keywords: Methyl paraben, propyl paraben, HPA axis, male rat, ENDOCRINE-DISRUPTING CHEMICALS, NONMONOTONIC DOSE-RESPONSES, BISPHENOL-A, IMMUNOHISTOCHEMICAL ANALYSIS, ALDOSTERONE BIOSYNTHESIS, SAFETY ASSESSMENT, EXPOSURE, PHTHALATE, H295R, EXPRESSION

Abstract

The aim of this study was to investigate the endocrine-disrupting effects of methyl paraben (MeP) and propyl paraben (PrP) mixture on the hypothalamic-pituitary-adrenal axis (HPA). In this study, six experimental groups were designated. These groups included three control groups (control, corn oil control, and positive control (50 mg/kg/day BPA)) and three dose groups (10, 100, and 500 mg/kg/day MeP+PrP). MeP with PrP were mixed in a 1:1 ratio and administered to the 42-day-old male rats by oral gavage for 30 days. At the end of the experiment, adrenocorticotropic hormone (ACTH), corticosterone and aldosterone hormones were analyzed in serum. Effects of MeP+PrP on the adrenal glands were investigated by immunohistochemical staining of 11ss hydroxylase (CYP11B1) and aldosterone synthase (CYP11B2) enzymes involved in the synthesis steps of corticosterone and aldosterone. Also, pituitary and adrenal glands were examined histopathologically. In the histopathological findings, cortical nodule, congestion, and edema were found in the tissues. In the pituitary gland, cytokeratin rings were detected in all MeP+PrP dose groups, supporting the increase of corticosterone and ACTH. Serum corticosterone, aldosterone, and ACTH hormone levels were increased in the 100 mg/kg/day MeP+PrP and BPA groups. Results obtained from immunohistochemical staining showed that increased staining parallelled increased corticosterone and aldosterone hormone levels. In summary, the results showed that exposure to the MeP+PrP mixture caused a significant increase in ACTH and corticosterone. Also, the MeP+PrP mixture caused a significant increase of CYP11B1 and CYP11B2. MeP+PrP exposure disrupts the normal HPA axis.