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Abstract. We characterize prime submodules of R × R for a principal ideal domain R
and investigate the primary decomposition of any submodule into primary submodules of
R×R.
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1. Introduction

Throughout this note all rings are commutative with identity and all modules are

unital. Let R be a ring and M an R-module. A submodule K of M is called prime
if K �=M and given r ∈ R, m ∈ M then rm ∈ K implies m ∈ K or rM ⊆ K.

Definition 1.1. Let M be a module and K a submodule of M. Let n be a

non-negative integer. We say that K has height n if there exists a chain

K = K0 ⊃ K1 ⊃ . . . ⊃ Kn

of prime submodules Ki (0 � i � n) of M , but no such chain that is longer. Other-
wise, we say that K has infinite height.

For any submodule K of an R-module M let

(K :M) = {r ∈ R : rM ⊆ K} .

Clearly (K :M) is an ideal ofR. The following lemma is wellknown (see, for example,
[2, Theorem 1] ).
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Lemma 1.2. Let R be a commutative ring and let M be an R-module. Then a

submodule K of M is prime if and only if P = (K : M) is a prime ideal of R and

M/K is a torsion-free (R/P )-module.

Matsumura proved in [8] that all prime ideals of the ring R1×R2× . . .×Rn, where
Ri is a ring for all i = 1, . . . , n, are of the form R1 × . . . Ri−1 ×Pi ×Ri+1 × . . .×Rn

where Pi is a prime ideal of Ri. The natural question about prime submodules of
R1×R2× . . .×Rn is still open. Some of the prime submodules of R(n) where R is a

PID were studied in [5]. Now we begin our investigation leading to a characterization
of the prime submodules of R × R by giving some necessary definitions and useful

lemmas.

From now on, we employ R to denote a principal ideal domain (PID) and M to
denote R×R.

For any prime element p in R, it is easy to see that R × pR, pR × R, {0} × R

and R×{0} are all prime submodules of M. Also we can see that for unequal prime
elements p and q, pR× qR is not a prime submodule of M. (Take R = �, the set of

integers, M = �×�, p = 2 and q = 3.) Also we note that, for any prime element p,
R× pR and pR×R are maximal submodules of M.

Now let us consider the set N = {(x, x) : x ∈ R} . It is easy to see that N is a

prime submodule of M . The remaining classes of prime submodules of M are given
in the next section.

2. The prime submodules

Lemma 2.1. Let a and b be non-zero elements in R. Let N = (a, b)R. Then N is

a prime submodule of M if and only if the elements a and b are coprime.

�����. Let N = (a, b)R be a prime submodule of M. Suppose the greatest

common divisor (g.c.d.) of a and b is d which is not equal to 1. Then there exist
coprime numbers a1 and b1 in R such that a = da1 and b = db1. Then (a, b) =

d(a1, b1) ∈ N. Since N is prime, (a1, b1) ∈ N or dM ⊆ N . Suppose that dM ⊆ N .
From this we get d(1, 0) ∈ N and d(0, 1) ∈ N . But if d(1, 0) ∈ N we get b = 0 and if

d(0, 1) ∈ N we get a = 0, a contradiction. Thus dM �⊆ N . Then (a1, b1) ∈ N. This
gives us N = (a1, b1)R. Conversely, let the g.c.d. of a and b be 1. Then we wish to

prove that N is a prime submodule of M. Let r ∈ R and (m, n) ∈ M be a such that
r(m, n) ∈ N. Then there exists x ∈ R such that rm = ax and rn = bx. From this we

get m = ab′ and n = bb′ for some b′ ∈ R. This completes the proof. �

The following lemma is wellknown. We give the proof for the sake of completeness.
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Lemma 2.2. Let N = (a, b)R be a prime submodule of M. Then N is a direct

summand of M.

�����. Assume that N = (a, b)R is a prime submodule of M. Since {0} × R

and R×{0} are prime submodules and direct summands of M we may assume that

a and b are non-zero elements in R. By Lemma 2.1 there exist c, d in R such that
ad + bc = 1. Let K = (−c, d)R. Then we have M = N + K. It is easy to see that

N ∩K = (0). This completes the proof. �

Proposition 2.3. Let N be a prime submodule of M which is distinct from

R× {0} and {0} ×R. Then

(i) if (1, 0) ∈ N then N = R× pR for some prime element p in R,

(ii) if (0, 1) ∈ N then N = pR×R for some prime element p in R.

�����. (i) Let (a, b) ∈ N . Suppose the g.c.d. of a and b is d. Then there exist

a1 and b1 in R such that (a, b) = d(a1, b1) ∈ N. Since N is a prime submodule of M ,
either (a1, b1) ∈ N or dM ⊆ N. Suppose that (a1, b1) ∈ N. From the hypothesis we

get (0, b1) ∈ N. This implies that b1M ⊆ N , otherwise N =M. There exists a prime
element p in R such that pM ⊆ N. Therefore we get N = R × pR. Now we suppose
that dM ⊆ N. For some prime element p in R we get pM ⊆ N. This completes the

proof of part (i).
(ii) This can be proved using the same argument as in (i). �

Proposition 2.4. Let p be a prime element in R. Then pM is a prime submodule

of M of height 1.

�����. Since (pM :M) = p, pM is a prime submodule of M by Lemma 1.2 or
by the remark just before Lemma 3 in [6] . Suppose there exists a prime submodule

N in M such that pM ⊃ N ⊃ 0. Let (m, n) ∈ N. Then m = px and n = py for some
x and y in R. Since N is prime, either (x, y) ∈ N or pM ⊆ N. Suppose (x, y) ∈ N.

Then for each r ∈ �+ (where �+ is the set of positive integers), pr divides m, which
is a contradiction. So we get the desired result. �

The following proposition and Proposition 2.4 characterize all prime submodules

of M of height 1.

Proposition 2.5. Let N be a prime submodule of M of height 1. Then

(i) if N has an element (a, b) such that the g.c.d. of a and b is 1 then N = (a, b)R,
(ii) if there are no pairs in N whose g.c.d. is 1 then there is a prime element p in R

such that N = pM.

�����. (i) This is easy by Lemma 2.1.
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(ii) Suppose that for all (a, b) in N the g.c.d. of a and b is distinct from 1. Let

(a, b) ∈ N be such that the g.c.d. of a and b is d. Then we get dM ⊆ N. So the result
follows from Proposition 2.4. �

The prime elements in R characterize, under some conditions, some of the prime
submodules in M.

Proposition 2.6. Let p be a prime element in R. Let a, b ∈ R be such that the

pairs a, b and a, p and b, p are coprime. Then

(i) K = {(c, d) ∈ M : p divides ad− bc} is a prime submodule of M ,
(ii) the set {(c, d) ∈ M : ad = bc} is a prime submodule of M.

�����. (i) It is clear that K is a proper submodule of M. Take (u, v) ∈ M and

r ∈ R such that r(u, v) ∈ K and (u, v) /∈ K. The prime element p divides rav − rbu

but does not divide av − bu. This completes the proof.

(ii) This follows from [5, Lemma 4]. �

To find a new prime submodule of M , we assume that N is a submodule of M

which is distinct from pR×R and R× pR for some prime element p in R.

Theorem 2.7. Let the situation be as above. Suppose that N is a submodule of

M and (a, b) ∈ N with the g.c.d. of a and b being 1. Also assume that pM ⊆ N for

some prime element p in R. Then N is a prime submodule of M if and only if

N = {(c, d) ∈ M : p divides ad− bc} .

�����. Note that if p divides a then (a, 0) ∈ N. Hence b(0, 1) ∈ N. Since the
g.c.d. of a and b is 1, p does not divide b and so bM �⊆ N. Hence by Proposition 2.3 (ii),

N = pR×R. This contradicts our hypothesis. Therefore p does not divide a.We may
assume that the pairs a, p and b, p are coprime. Then there exist a1, b1, a2, b2, p1, p2

in R such that

(∗) aa1 + pp1 = 1, bb1 + pp2 = 1 and aa2 + bb2 = 1 . . .

Set K = {(c, d) ∈ M : p divides ad− bc} .

Let (c, d) ∈ N. Assume that p does not divide ad− bc. Since (a, b), (c, d) ∈ N , we

get (ad − bc, 0) ∈ N. By assumption we have (ad − bc)M ⊆ N. But this leads to a
contradiction. Hence p divides ad− bc and so (c, d) ∈ K. Conversely, let (c, d) ∈ K.

Then there exists t ∈ R such that ad − bc = pt. From (∗) we have (c, d) = (bb1c +
pp2c, aa1d+ pp1d). Since pM ⊆ N , to see that (c, d) ∈ N it is enough to show that

(bb1c, aa1d) ∈ N. Since ad − bc = pt, we have (bb1c, aa1d) = (adb1 + ptb1, aa1d).
Hence it will be enough to show that (adb1, ada1) ∈ N. But since (a, b) ∈ N , we
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have (aa1, ba1) ∈ N. From (∗) we get (1, ba1) ∈ N and then (bb1, ba1) ∈ N. Since N

is prime we conclude that bM ⊆ N or (b1, a1) ∈ N. This completes the proof since
the sufficiency is clear from Proposition 2.6. �

We note that any submodule of M can be generated by 2-elements. Now we
investigate such modules. Let N = (a, b)R + (c, d)R be a proper submodule of M

where a, b, c, d are elements in R. We define ∆ = ad− bc, and we may assume that
∆M ⊆ N. The following proposition characterizes some of the prime submodules

of M.

Proposition 2.8. Let N and ∆ be as above. If ∆ is a prime element in R then

N is a prime submodule of M.

�����. Let K = {(x, y) ∈ M : ∆ divides ay − bx and cy − dx} . Then it is easy

to see that N ⊆ K. Let (x, y) ∈ K. Then ay − bx = ∆t and cy − dx = ∆t1 for some
t, t1 in R. Thus we get x = −at1 + ct, y = dt − bt1 and then (x, y) ∈ N. It follows
that N = K. Hence, since K is prime, we see that N is a prime submodule ofM. �

Let N and ∆ be as in Proposition 2.8. Also suppose that N is prime and ∆ =

p1 . . . pn (all distincts primes). Then there is only one prime pi (1 � i � n) such that
piM ⊆ N. In view of this fact we obtain the following

Proposition 2.9. Let N and ∆ be as in Proposition 2.8. Assume that, for some

prime element p, pM ⊆ N and ∆ = pq where p and q are coprime. Then N is prime

if and only if

N = {(x, y) : p divides ay − bx and cy − dx} .

�����. Let K = {(x, y) ∈ M : p divides ay − bx and ay − dx} . Suppose that

N is prime. Then it is clear that N ⊆ K. For the converse, let (x, y) ∈ K. Then for
some t, t1 ∈ R we have

ay − bx = pt and cy − dx = pt1.

Then we get qx = tc− at1 and qy = dt − bt1. Hence (qx, qy) ∈ N. Since N is prime

we get (x, y) ∈ N. Therefore we have N = K. This completes the proof since the
necessity is clear. �

Now we conclude this section by the following proposition.

Proposition 2.10. Let N be a prime submodule ofM distinct from both R×{0}
and {0} ×R. Suppose that (a, b) and (c, d) ∈ N are such that the g.c.d. of the pairs
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a, b and c, d is 1. Then N is either in the form pR × R, R × pR for some prime

element p in R or it is one of the prime submodules mentioned in Theorem 2.7.

�����. We divide the proof into two parts. First suppose that a �= c but b = d.

Then (a − c, 0) ∈ N. Then either (a − c)M ⊆ N or (1, 0) ∈ N. If (1, 0) ∈ N then,

by Proposotion 2.3 (i), N = R × pR. Otherwise there exists a prime element p in
R such that N = {(c, d) ∈ M : p divides ad− bc } by Theorem 2.7. Secondly, a �= c

but b �= d. Then (0, ad − bc) ∈ N. Then either (ad − bc)M ⊆ N or (0, 1) ∈ N. Now
the result follows from Proclaim 2.3 (ii) or Theorem 2.7. �

3. Primary decomposition

In this section we investigate the primary decomposition of the submodules of M
where we still take R as a principal ideal domain and M as R×R. First we give the

definition of the primary submodule. Let N be a proper submodule of M. Then we
say that N is a primary submodule of M if r ∈ R, m ∈ M , rm ∈ N implies m ∈ N

or rkM ⊆ N for some positive integer k. If N is a primary submodule of M then the
radical of the ideal (N :M) is a prime ideal of R. If the radical of (N :M) which is

denoted by
√

N :M is equal to P then N is called a P -primary submodule of M.

Definition 3.1. LetN be a proper submodule ofM. A primary decomposition of
N inM is an expression for N as an intersection of finitely many primary submodules

of M. Such a primary decomposition N = Q1 ∩Q2 ∩ . . .∩Qn with Qi Pi-primary in
M (1 � i � n) of N in M is said to be minimal precisely when

(i) P1, . . . , Pn are n different prime ideals of R; and

(ii) for all j = 1, . . . , n, we have

Qj �⊇
n⋂

i=1
j �=i

Qi.

Remark 3.2. Let N be a proper submodule of M. Then by [9, 9.27 and 9.31] N
has a minimal primary decomposition in M. Let N = Q1 ∩ Q2 ∩ . . . ∩ Qn with Qi

Pi-primary in M (1 � i � n) be a minimal primary decomposition of N in M. Then
by [9, 9.31], for a prime ideal P of R we have

P ∈ {P1, . . . , Pn} ⇐⇒ P ∈ AssR(M/N).

Lemma 3.3. Let p be a prime element in R. Then prM (where r is positive

integer) is a primary submodule of M.

88



Now we can give the primary decomposition of the submodules of M in the form

(a, b)R where the g.c.d. of a and b is distinct from 1.

Proposition 3.4. Let N be a cyclic submodule of M whose g.c.d. of the genera-

tors is different from 1. Then

N = (pr1
1 M) ∩ (pr2

2 M) ∩ . . . ∩ (prs
s M) ∩N1

where p1, . . . , ps are distinct prime elements in R and N1 is a prime submodule of

M containing N.

�����. Let N = (a, b)R and suppose that the g.c.d. of a and b is d and that the
distinct prime factors of d are p1, . . . , ps. Then d = pr1

1 . . . prs
s . Now we claim that the

primary decomposition of N is (pr1
1 M)∩ . . .∩ (prs

s M)∩ ((a1, b1)R) where a = da1and
b = db1. Let (x, y) ∈ (pr1

1 M) ∩ . . . ∩ (prs
s M) ∩ ((a1, b1)R). Then

x = pr1
1 u1 = pr2

2 u2 = . . . = prs
s us = a1t1,

y = pr1
1 v1 = pr2

2 v2 = . . . = prs
s vs = b1t1

where u1, u2, . . . , us, v1, . . . , vs are all in R. Hence we get (x, y) ∈ (a, b)R = N. This
completes the proof since the reverse inclusion is clear. �

Corollary 3.5. Let N be as in Proposition 3.4. Then

AssR(M/N) = {0, P1, . . . , Pn}

where Pi denotes the prime ideal which is generated by the prime element pi in R

for all i = 1, . . . , n.

�����. This follows from Proposition 3.4, [9, (9.33)(ii)] and
√
(a1, b1)R :M = 0.

�

Now we take N with two generators. To get the primary decomposition of N we

give the following lemma.

Lemma 3.6. Let N = (a, b)R + (c, d)R, a, b, c, d ∈ R, be a proper submodule of

M. Let ∆ = ad − bc be a non-zero element in R. Then for any factor pr of ∆ with

r ∈ �+,
Q = {(x, y) : pr divides ay − bx and cy − dx} .

is a primary submodule of M.

Now we are ready to give the main theorem of this section.

89



Theorem 3.7 (Primary Decomposition). Let the situation be as in Lemma
3.6. If ∆ = pr1

1 . . . prt
t where p1, . . . , pt are distinct prime elements in R and

r1, . . . , rt ∈ �+ then N has a primary decomposition

N =
t⋂

i=1

Ki

where Ki = {(x, y) : pri

i divides ay − bx and cy − dx} for all i (1 � i � t).

�����. Set K = ∩t
i=1Ki. Then N ⊆ K is clear.

Let (x, y) ∈ K. Then there exist ti, si ∈ R such that ay− bx = pri

i ti and cy−dx =
pri

i si for each i, 1 � i � t. Then for some t, s ∈ R we get

ay − bx = ∆t and cy − dx = ∆s

Now the result follows from Proposition 2.9. �

Corollary 3.8. Let N be as in Theorem 3.7. Then AssR(M/N) = {P1, . . . , Pt}
where Pi denotes the prime ideal which is generated by the prime element pi in R

for all i = 1, . . . , n.

�����. This follows from [9, (9.33) (ii)]. �
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