Functional Copolymer/Organo-MMT Nanoarchitectures. VI. Synthesis and Characterization of Novel Nanocomposites by Interlamellar Controlled/Living Radical Copolymerization via Preintercalated RAFT-Agent/Organoclay Complexes

Rzayev Z. M. O. , Soylemez A. E.

JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, cilt.11, ss.3523-3532, 2011 (SCI İndekslerine Giren Dergi) identifier identifier identifier

  • Cilt numarası: 11 Konu: 4
  • Basım Tarihi: 2011
  • Doi Numarası: 10.1166/jnn.2011.3755
  • Sayfa Sayıları: ss.3523-3532


We have developed a new approach for the synthesis of polymer nanocomposites using a bifunctional reversible addition-fragmentation chain transfer (RAFT) agent, two types of organomontmorillonites, such as a non-reactive dimethyldodecyl ammonium (DMDA)-MMT and a reactive octadecylamine (ODA)-MMT organoclays, and a radical initiator. The method includes the following stages: (1) synthesis of RAFT intercalated O-MMTs by a physical or chemical interaction of the RAFT agent having two pendant carboxylic groups [S,S-bis(alpha,alpha'-dimethyl-alpha ''-acetic acid)trithiocarbonate] with surface alkyl amines of O-MMT containing tertiary ammonium cation or primary amine groups through strong H-bonding and complexing/amidization reactions, respectively, and (2) utilization of these well-dispersed and intercalated RAFT center dot center dot center dot O-MMT complexes and their amide derivatives as new modified RAFT agents in radical-initiated interlamellar controlled/living copolymerization of itaconic acid (IA)-n-butylmethacrylate (BMA) monomer pair. The structure and compositions of the synthesized RAFT center dot center dot center dot O-MMT complexes and functional copolymer/O-MMT hybrids were confirmed by FTIR, XRD, thermal (DSC-TGA), SEM and TEM morphology analyses. It was demonstrated that the degree of interaction/exfoliation, morphology and thermal behavior of nanocomposites significantly depended on the type of organoclay and in situ interaction, as well as on the content of flexible butyl-ester linkages as a internal plasticizer. The results of the comparative analysis of the nanocomposites structure composition property relations show that the functional copolymer organoclay hybrids prepared with reactive RAFT center dot center dot center dot ODA-MMT complex and containing a combination of partially intercalated and predominantly exfoliated nano-structures exhibit relatively higher thermal stability and fine dispersed morphology. These effects were explained by in situ interfacial chemical reactions through amidization of RAFT with surface alkyl amine of MMT clay in interlamellar copolymerization. This simple and versatile method can be applied to a wide range of functional monomer/comonomer systems and mono- and bifunctional RAFT compounds for preparation new generation of nanomaterials.