N-methacryloly-(L)-histidinemethylester carrying a pseudospecific affinity sorbent for immunoglobulin-G isolation from human plasma in a column system


Ozkara S., Garipcan B., Piskin E., Denizli A.

JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, vol.14, no.8, pp.761-776, 2003 (Journal Indexed in SCI) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 14 Issue: 8
  • Publication Date: 2003
  • Doi Number: 10.1163/156856203768366512
  • Title of Journal : JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION
  • Page Numbers: pp.761-776

Abstract

N-methacryloly-(L)-histidinemethylester (MAH) as a pseudospecific ligand was synthesized by using methacryloyl chloride and histidine. Spherical beads with an average size of 63-75 mum were obtained by suspension polymerization of ethylene glycol dimethacrylate (EGDMA), 2-hydroxyethyl methacrylate (HEMA) and MAH conducted in an aqueous dispersion medium. The specific surface area of the beads was found to be 18.3 m(2)/g. Poly(EGDMA-HEMA-MAH) beads were used in the separation of immunoglobulin-G (HIgG) from aqueous solutions and/or human plasma in a packed-bed column system. HIgG adsorption capacity of the beads decreased with an increase in the flow-rate of plasma. The maximum HIgG adsorption on the poly(EGDMA-HEMA-MAH) sorbents was observed at pH 7.4. HIgG adsorption onto the poly(EGDMA-HEMA) sorbents was negligible. Higher adsorption values (up to 135 mg/g) were obtained when the poly(EGDMA-HEMA-MAH) sorbents were used from aqueous solutions. HIgG adsorption increased with decreasing temperature and the maximum adsorption achieved at 4degreesC. MAH incorporation significantly affected HIgG adsorption capacity (135 mg/g). Higher amounts of HIgG were adsorbed from human plasma (up to 165 mg/g). Adsorption capacities of other blood proteins were obtained as 8.7 mg/g for fibrinogen and 14.6 mg/g for albumin. The total protein adsorption was determined as 191 mg/g. The pseudospecific affinity beads allowed one-step separation of HIgG from human plasma. HIgG molecules could be repeatedly adsorbed and desorbed with these sorbents without noticeable loss in their HIgG adsorption capacity.