FUZZY SETS AND SYSTEMS, cilt.157, sa.20, ss.2683-2705, 2006 (SCI-Expanded)
A texturing on a set S is a point separating, complete, completely distributive lattice L of subsets of S with respect to inclusion which contains S, empty set and, for which arbitrary meet coincides with intersection and finite joins coincide with union. The pair (S, L) is known as a texture space. In this paper, the authors present the concept of embedding for texture spaces and define the notion of difilter on a texture space. Then a Wallman-type compactification is discussed for a class of ditopological texture spaces in terms of so-called difunctions introduced by Brown and his team and it is expressed in the class of molecular weakly bi-R-1 Hutton spaces. (C) 2006 Elsevier B.V. All rights reserved.