q-cube enumerator polynomial of Fibonacci cubes


Saygı E., Eğecioğlu O.

DISCRETE APPLIED MATHEMATICS, cilt.226, ss.127-137, 2017 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 226
  • Basım Tarihi: 2017
  • Doi Numarası: 10.1016/j.dam.2017.04.026
  • Dergi Adı: DISCRETE APPLIED MATHEMATICS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.127-137
  • Anahtar Kelimeler: Hypercube, Fibonacci number, Fibonacci cube, Cube enumerator polynomial, q-analogue, LUCAS CUBES, DISJOINT HYPERCUBES, JACOBSTHAL
  • Hacettepe Üniversitesi Adresli: Evet

Özet

We consider a q-analogue of the cube polynomial of Fibonacci cubes. These bivariate polynomials satisfy a recurrence relation similar to the standard one. They refine the count of the number of hypercubes of a given dimension in Fibonacci cubes by keeping track of the distances of the hypercubes to the all 0 vertex. For q = 1, they specialize to the standard cube polynomials.