Using Motion History Images with 3D Convolutional Networks in Isolated Sign Language Recognition


Creative Commons License

Mercanoglu Sincan O., Keles H.

IEEE Access, cilt.10, ss.18608-18618, 2022 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 10
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1109/access.2022.3151362
  • Dergi Adı: IEEE Access
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Compendex, INSPEC, Directory of Open Access Journals
  • Sayfa Sayıları: ss.18608-18618
  • Anahtar Kelimeler: 3D-CNN, attention, deep learning, motion history image, sign language recognition
  • Hacettepe Üniversitesi Adresli: Evet

Özet

© 2013 IEEE.Sign language recognition using computational models is a challenging problem that requires simultaneous spatio-temporal modeling of the multiple sources, i.e. faces, hands, body, etc. In this paper, we propose an isolated sign language recognition model based on a model trained using Motion History Images (MHI) that are generated from RGB video frames. RGB-MHI images represent spatio-temporal summary of each sign video effectively in a single RGB image. We propose two different approaches using this RGB-MHI model. In the first approach, we use the RGB-MHI model as a motion-based spatial attention module integrated into a 3D-CNN architecture. In the second approach, we use RGB-MHI model features directly with the features of a 3D-CNN model using a late fusion technique. We perform extensive experiments on two recently released large-scale isolated sign language datasets, namely AUTSL and BosphorusSign22k. Our experiments show that our models, which use only RGB data, can compete with the state-of-the-art models in the literature that use multi-modal data.