Development and validation of a sensitive assay for the quantification of arachidonoylcyclopropylamide (ACPA) in cell culture by LC–MS/MS

Creative Commons License


Journal of Analytical Science and Technology, vol.14, no.1, 2023 (Scopus) identifier identifier


Synthetic and natural cannabinoid derivatives are highly investigated as drug candidates due to their antinociceptive, antiepileptic and anticancer potential. Arachidonoylcyclopropylamide (ACPA) is a synthetic cannabinoid with antiproliferative and apoptotic effects on non-small cell lung cancer and pancreatic and endometrial carcinoma. Thus, ACPA has a great potential for being used as an anticancer drug for epithelial cancers. Therefore, determining the levels of ACPA in biological fluids, cells, tissues and pharmaceutical dosage forms is crucial in monitoring the effects of various pharmacological, physiological and pathological stimuli on biological systems. However, the challenge in the quantification of ACPA is its short half-life and lack of UV signal. Therefore, we developed a liquid chromatography-tandem mass spectrometric (LC–MS/MS) method for sensitive and selective quantification of ACPA in cell culture medium and intracellular matrix. Multiple reaction monitoring in the positive ionization mode was used for detection with 344 → 203 m/z transitions. The separation of ACPA was performed on C18 column (50 × 3.0 mm, 2.1 μm) with the mobile phase run in the gradient mode with 0.1% formic acid (FA) in water and 0.1% FA in acetonitrile at a flow rate of 0.3 ml/min. The assay was linear in the concentration range of 1.8–1000 ng/mL (r = 0.999). The validation studies revealed that the method was linear, sensitive, accurate, precise, selective, repeatable, robust and rugged. Finally, the developed method was applied to quantify ACPA in cell culture medium and intracellular matrix.