Evaluation of genotoxicity, oxidative stress and immune parameters of auto-paint workers


ÇETİNTEPE S. P., Hazar M., Bilinmiş I., AYDIN DİLSİZ S., Basaran N.

Environmental Research, cilt.237, 2023 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 237
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1016/j.envres.2023.116970
  • Dergi Adı: Environmental Research
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Aerospace Database, Applied Science & Technology Source, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), Artic & Antarctic Regions, BIOSIS, CAB Abstracts, Chemical Abstracts Core, Communication Abstracts, Computer & Applied Sciences, EMBASE, Environment Index, Geobase, Greenfile, Metadex, Pollution Abstracts, Public Affairs Index, Veterinary Science Database, Civil Engineering Abstracts
  • Anahtar Kelimeler: Automotive industry, Comet assay, DNA damage, Occupational exposure, Oxidative stress, Specific information
  • Hacettepe Üniversitesi Adresli: Evet

Özet

The automotive industry is a very wide area from the manufacturing of the pieces of the engine, the body, plastics to the assembly of the car. There is a chemical risk at different stages of production because of the requirement of the use of many corrosive and irritant chemicals such as paints, adhesives, acids, and bases. The aim of the study was to determine the genotoxicity, oxidative stress and immune parameters of automotive paint workers in Ankara, Türkiye. DNA damage of workers mainly responsible from the painting of the automotives were evaluated using the alkaline comet assay and the levels of some oxidative stress and immune biomarkers were also investigated. Increased lymphocyte DNA damage and also higher 8-hydroxy-2′-deoxyguanosine (8-OHdG) and malondialdehyde (MDA) levels were observed while decreased glutathione (GSH), glutathione peroxidase (GPx), and glutathione reductase (GR) levels were found in the workers compared to their controls There were no significant differences between the study groups in the levels of interleukin (IL)- 1beta, IL-17, IL-23, Clara cell secretory protein (CC16), tumor necrosis factor-alpha (TNF-alpha), catalase (CAT), and superoxide dismutase (SOD). The results show that occupational exposure to chemicals in automotive industry may cause DNA damage in workers due to oxidative stress.