Synthesis and characterization of Cu3Se2 nanofilms by an underpotential deposition based electrochemical codeposition technique


Aydin Z. Y., ABACI S.

SOLID STATE SCIENCES, cilt.74, ss.74-87, 2017 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 74
  • Basım Tarihi: 2017
  • Doi Numarası: 10.1016/j.solidstatesciences.2017.10.011
  • Dergi Adı: SOLID STATE SCIENCES
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.74-87
  • Hacettepe Üniversitesi Adresli: Evet

Özet

The Cu3Se2 nanofilms were synthesized with underpotential deposition based electrochemical codeposition technique for the first time in the literature. The electrochemical behaviors of copper and selenium were investigated in 0.1 M H2SO4 on Au electrode. The effects of concentration and scan rate on the electrochemical behavior of selenium were studied. The electrochemical behaviors in underpotential deposition and bulk regions of the Cu-Se system were investigated in acidic solution by cyclic voltammetry and electrolysis techniques. X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy, X-ray diffraction, Raman spectroscopy, and ultraviolet and visible absorption spectroscopy techniques were used for characterization of synthesized films. According to the X-ray photoelectron spectroscopy spectrum, Cu/Se ratio was determined to be approximately 3/2. Copper selenide nanofilms are two phases and polycrystalline according to X-ray diffraction. The films mainly formed tetragonal Cu3Se2 (umangite mineral structure) structure and the particle size was approximately 45.95 nm. Scanning electron microscopy images showed that Cu3Se2 nanofilms consisted of uniform, nano-sizes and two-dimensional. It was found through AFM that the surface roughness of the film was 6.173 nm, with a mean particle size of around 50 nm. Depending on the deposition time, the band gaps of the Cu3Se2 films were in the range of 2.86-3.20 eV. Three characteristic vibrational modes belonging to Cu3Se2 nanofilms were recorded in the Raman spectrum. (C) 2017 Elsevier Masson SAS. All rights reserved.