Combining phylogeography and climate models to track the diversification and spread of <i>Phlebotomus simici</i>


Creative Commons License

Kniha E., Koblmueller S., Platzgummer K., Kirstein O., Diaz D., Dvorak V., ...Daha Fazla

SCIENTIFIC REPORTS, sa.1, 2025 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Basım Tarihi: 2025
  • Doi Numarası: 10.1038/s41598-025-94601-1
  • Dergi Adı: SCIENTIFIC REPORTS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, BIOSIS, Chemical Abstracts Core, MEDLINE, Veterinary Science Database, Directory of Open Access Journals
  • Hacettepe Üniversitesi Adresli: Evet

Özet

Phlebotomine sand flies (Diptera: Psychodidae: Phlebotominae) are the principal vectors of Leishmania spp. (Kinetoplastida: Trypanosomatidae) worldwide. The subgenus Adlerius is taxonomically challenging and currently comprises about 20 species with a wide geographic distribution from eastern Asia to southeastern Europe. Some species are confirmed or suspected vectors of Leishmania donovani/infantum, L. major, and L. tropica, and are thus of high medical and veterinary relevance. A single record of Phlebotomus (Adlerius) simici in Austria from 2018 marks its sporadic northernmost and westernmost occurrence, with the origin of its appearance remaining unclear. To better understand Adlerius diversification and particularly post-glacial spread of Ph. simici to northern parts of Europe, we combined phylogenetic analyses with climatic suitability modelling. Divergence time estimates well supported the currently observed geographic distribution of the studied species and revealed several taxonomic challenges in the subgenus. We clearly delineated three distinct genetic and geographic Ph. simici lineages and phylogeographically assessed diversification that were well supported by climatic models. This study provides a comprehensive phylogenetic analysis of the subgenus Adlerius, enhancing our understanding of the diversification in relation to changing climate of this understudied group, and we present new insights into the post-glacial spread of Ph. simici, a suspected vector of L. infantum.