Evolution of mafic lavas in Central Anatolia: Mantle source domains


Creative Commons License

Furman T., Hanan B. B., Sjoblom M. P., KÜRKCÜOĞLU B., SAYIT K., ŞEN E., ...Daha Fazla

GEOSPHERE, cilt.17, sa.6, ss.1631-1646, 2021 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 17 Sayı: 6
  • Basım Tarihi: 2021
  • Doi Numarası: 10.1130/ges02329.1
  • Dergi Adı: GEOSPHERE
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Aquatic Science & Fisheries Abstracts (ASFA), Compendex, Geobase, Metadex, Directory of Open Access Journals, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.1631-1646
  • Hacettepe Üniversitesi Adresli: Evet

Özet

We present new Sr-Nd-Pb-Hf isotopic data on mafic lavas from the Sivas, Develidag, Erciyes, and Erkilet volcanic complexes in central Turkey and Tenchirek in eastern Turkey to evaluate the mantle sources for volcanism in the context of the geodynamic evolution of the Anatolian microplate. Early Miocene through Quaternary volcanism in Western Anatolia and latest Miocene through Quaternary activity in Central Anatolia were dominated by contributions from two distinct source regions: heterogeneous metasomatized or subduction-modified lithosphere, and roughly homogeneous sublithospheric ambient upper mantle; we model the source contributions through mixing between three end members. The sublithospheric mantle source plots close to the Northern Hemisphere reference line (NHRL) with radiogenic Pb-206/Pb-204 of similar to 19.15, while the other contributions plot substantially above the NHRL in Pb isotope space. The lithospheric source is heterogeneous, resulting from variable pollution by subduction-related processes likely including direct incorporation of sediment and/or melange; its range in radiogenic isotopes is defined by regional oceanic sediment and ultrapotassic melts of the subcontinental lithospheric mantle. The geochemical impact of this contribution is disproportionately large, given that subduction-modified lithosphere and/or ocean sediment dominates the Pb isotope signatures of mafic Anatolian lavas. Subduction of the Aegean or Tethyan seafloor, associated with marked crustal shortening, took place throughout the region until ca. 16-17 Ma, after which time broad delamination of the thickened lower crust and/or the Tethyan slab beneath Central Anatolia allowed for sediment and/or melange and slab-derived fluids to be released into the overlying evolving modified mantle. Aggregation of melts derived from both mantle and lithospheric domains was made possible by upwelling of warm asthenospheric material moving around and through the complexly torn younger Aegean-Cyprean slab that dips steeply to the north beneath southern Anatolia.