HOW TRAVEL DEMAND AFFECTS DETECTION OF NON-RECURRENT TRAFFIC CONGESTION ON URBAN ROAD NETWORKS


Creative Commons License

Anbaroglu B., Heydecker B., Cheng T.

23rd Congress of the International-Society-for-Photogrammetry-and-Remote-Sensing (ISPRS), Prague, Czech Republic, 12 - 19 July 2016, vol.41, pp.159-164 identifier identifier

  • Publication Type: Conference Paper / Full Text
  • Volume: 41
  • Doi Number: 10.5194/isprsarchives-xli-b2-159-2016
  • City: Prague
  • Country: Czech Republic
  • Page Numbers: pp.159-164
  • Hacettepe University Affiliated: Yes

Abstract

Occurrence of non-recurrent traffic congestion hinders the economic activity of a city, as travellers could miss appointments or be late for work or important meetings. Similarly, for shippers, unexpected delays may disrupt just-in-time delivery and manufacturing processes, which could lose them payment. Consequently, research on non-recurrent congestion detection on urban road networks has recently gained attention. By analysing large amounts of traffic data collected on a daily basis, traffic operation centres can improve their methods to detect non-recurrent congestion rapidly and then revise their existing plans to mitigate its effects. Space-time clusters of high link journey time estimates correspond to non-recurrent congestion events. Existing research, however, has not considered the effect of travel demand on the effectiveness of non-recurrent congestion detection methods. Therefore, this paper investigates how travel demand affects detection of non-recurrent traffic congestion detection on urban road networks. Travel demand has been classified into three categories as low, normal and high. The experiments are carried out on London's urban road network, and the results demonstrate the necessity to adjust the relative importance of the component evaluation criteria depending on the travel demand level.