Radiometric, Geometric, and Image Quality Assessment of ALOS AVNIR-2 and PRISM Sensors


SAUNIER S., GORYL P., CHANDER G., SANTER R., BOUVET M., COLLET B., ...Daha Fazla

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, cilt.48, sa.10, ss.3855-3866, 2010 (SCI-Expanded) identifier identifier

Özet

The Advanced Land Observing Satellite (ALOS) was launched on January 24, 2006, by a Japan Aerospace Exploration Agency (JAXA) H-IIA launcher. It carries three remote-sensing sensors: 1) the Advanced Visible and Near-Infrared Radiometer type 2 (AVNIR-2); 2) the Panchromatic Remote-Sensing Instrument for Stereo Mapping (PRISM); and 3) the Phased-Array type L-band Synthetic Aperture Radar (PALSAR). Within the framework of ALOS Data European Node, as part of the European Space Agency (ESA), the European Space Research Institute worked alongside JAXA to provide contributions to the ALOS commissioning phase plan. This paper summarizes the strategy that was adopted by ESA to define and implement a data verification plan for missions operated by external agencies; these missions are classified by the ESA as third-party missions. The ESA was supported in the design and execution of this plan by GAEL Consultant. The verification of ALOS optical data from PRISM and AVNIR-2 sensors was initiated 4 months after satellite launch, and a team of principal investigators assembled to provide technical expertise. This paper includes a description of the verification plan and summarizes the methodologies that were used for radiometric, geometric, and image quality assessment. The successful completion of the commissioning phase has led to the sensors being declared fit for operations. The consolidated measurements indicate that the radiometric calibration of the AVNIR-2 sensor is stable and agrees with the Landsat-7 Enhanced Thematic Mapper Plus and the Envisat MEdium-Resolution Imaging Spectrometer calibration. The geometrical accuracy of PRISM and AVNIR-2 products improved significantly and remains under control. The PRISM modulation transfer function is monitored for improved characterization.