Effective α-glycosidase inhibitors based on polyphenolic benzothiazole heterocycles


Sevimli E., SEYHAN G., AKKAYA D., SARI S., BARUT B., Köksoy B.

Bioorganic Chemistry, vol.147, 2024 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 147
  • Publication Date: 2024
  • Doi Number: 10.1016/j.bioorg.2024.107366
  • Journal Name: Bioorganic Chemistry
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Chemical Abstracts Core, Chimica, EMBASE, Veterinary Science Database
  • Keywords: Benzothiazole, Enzyme inhibition, Schiff base, α-glycosidase
  • Hacettepe University Affiliated: Yes

Abstract

α-Glycosidase inhibition is one of the main approaches to treat Diabetes mellitus. Polyphenolic moieties are known to be responsible for yielding exhibit potent α-glycosidase inhibitory effects. In addition, compounds containing benzothiazole and Schiff base functionalities were previously reported to show α-glycosidase inhibition. In this paper, the synthesis of seven new phloroglucinol-containing benzothiazole Schiff base derivatives through the reaction of 6-substituted-2-aminobenzothiazole compounds with 2,4,6-trihydroxybenzaldehyde using acetic acid as a catalyst was reported. The synthesized compounds were characterized using spectroscopic methods such as FT-IR, 1H NMR, 13C NMR, and elemental analysis. The synthesized compounds were evaluated for their inhibitory effects on α-glycosidase, compounds 3f and 3g were found to show significant inhibitory properties when compared to the positive control. The IC50 values of 3f and 3g were calculated as 24.05 ± 2.28 and 18.51 ± 1.19 µM, respectively. Kinetic studies revealed that compounds 3f and 3g exhibited uncompetitive mode of inhibition against α-glycosidase. Molecular modeling predicted druglikeness for the title compounds and underpinned the importance of phloroglucinol hydroxyls for interacting with the key residues of α-glycosidase.