Solvent-dehydrated calvarial allografts in craniofacial surgery


Vargel I. , Tuncbilek G., Mavili E., Cila A., Ruacan S., Benli K., ...More

PLASTIC AND RECONSTRUCTIVE SURGERY, vol.114, no.2, pp.298-306, 2004 (Journal Indexed in SCI) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 114 Issue: 2
  • Publication Date: 2004
  • Doi Number: 10.1097/01.prs.0000131983.48201.e2
  • Title of Journal : PLASTIC AND RECONSTRUCTIVE SURGERY
  • Page Numbers: pp.298-306

Abstract

Craniofacial surgery almost always requires the use of bone grafting. Although autografts are the standard procedure for bone grafting, it is sometimes not possible to harvest bone, and autografts have particular risks. The use of allograft bone provides a reasonable alternative to meet the need for graft material. Solvent dehydration is a multistage procedure in which human cadaveric bone is processed by osmotic exchange baths and gamma sterilization. This processing avoids the risk of infection transmission, decreases antigenicity, and does not weaken the mechanical properties of the bone. Solvent-dehydrated, gamma-irradiated human calvarial bone allografts were used for reconstruction of craniofacial deformities in 24 patients between 1988 and 2002. Resorption of the allografts and results of the surgical intervention were evaluated with plain radiographs and three-dimensional computed tomography 12 months after surgery, in 21 patients. Serologic tests for human immunodeficiency virus-1 antibody, hepatitis B surface antigen, and hepatitis C antigen were also performed. Biopsy specimens were taken from the allografts. Average follow-up in this group was 30 months (range, 8 to 60 months), and results of serologic tests were negative in all patients. Seventy-one percent of the patients (15 of 21) showed no resorption, with partial and complete allograft fusion. One patient had nearly total graft loss and the remaining five patients had 10 to 25 percent graft resorption. Rigid fixation of the allograft, contact with the dura and periosteum, and prevention of dead spaces around the allograft are the most important factors in achieving a satisfactory result. In solvent-dehydrated bone allografts, sterilization and antigenic tissue cleaning are achieved after several steps with a minimal dose of radiation. The result is a nonantigenic, sterile mechanical scaffold that can tolerate external forces. Although autografts are the standard in craniofacial surgery, solvent-dehydrated calvarial bone allografts produced successful results in selected cases.