Whole genome analysis of Flavobacterium aziz-sancarii sp. nov., isolated from Ardley Island (Antarctica), revealed a rich resistome and bioremediation potential


Otur Ç., OKAY S., Kurt-Kızıldoğan A.

Chemosphere, vol.313, 2023 (SCI-Expanded) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 313
  • Publication Date: 2023
  • Doi Number: 10.1016/j.chemosphere.2022.137511
  • Journal Name: Chemosphere
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Aerospace Database, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), Artic & Antarctic Regions, BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Chemical Abstracts Core, Chimica, Communication Abstracts, Compendex, EMBASE, Environment Index, Food Science & Technology Abstracts, Geobase, Greenfile, MEDLINE, Metadex, Pollution Abstracts, Public Affairs Index, Veterinary Science Database, Civil Engineering Abstracts
  • Keywords: Flavobacterium aziz-sancarii, MLSA, Whole genome analysis, Phylogenomics, Potentially toxic element resistance, Resistome
  • Hacettepe University Affiliated: Yes

Abstract

© 2022 Elsevier LtdDespite being one of the most isolated regions in the world, Antarctica is at risk of increased contamination with potentially toxic elements and other toxic chemicals through anthropogenic interventions. In this study, a psychrotolerant bacterium was isolated using the lake water collected from Ardley Island (Antarctica), which can grow at temperatures between 4 and 30 °C and pH values between 6.0 and 9.0. The isolate, named AC, had protease, amylase, and lipase activities with no NaCl tolerance and could degrade 1–5% diesel fuel. Multilocus sequence analysis (MLSA) using 16S rRNA, gyrB, tuf, and rpoD genes resulted in 92.91–98.6% sequence similarities between the isolate AC and other Flavobacterium spp. Whole genome analysis indicated that the genome length of Flavobacterium sp. AC is 5.8 Mbp with a GC content of 34.04% and 1274 genes predicted. The strain AC branched independently from other Flavobacterium spp. in the phylogenetic and phylogenomic trees and ranked a new species named Flavobacterium aziz-sancarii. Genome mining identified several cold-inducible genes, including stress-associated genes such as cold-shock proteins, chaperones, carotenoid biosynthetic genes, or oxidative-stress response genes. In addition, virulence, gliding motility, and biofilm-related genes were determined. Its genome contains 35 and 88 open-reading frames related to potentially toxic element and antibiotic resistance, respectively. F. aziz-sancarii showed a remarkable tolerance of Cr and Ni, with minimal inhibitory concentration values of 2.88 and 2.81 mM, respectively. Pb, Cu, and Zn exposure resulted in moderate toxicity (2.14–2.41 mM), while Cd showed the highest inhibitory effect in bacterial growth (0.74 mM). Antibiotic susceptibility testing indicated multidrug-resistant phenotype in correlation to in silico prediction of antibiotic resistance genes. Overall, our results contribute to biodiversity of Antarctica and provide new insights into resistome profile of Antarctic microorganisms. Additionally, the diesel degradation feature of F. aziz-sancarii offers potential use for the bioremediation of hydrocarbon-contaminated polar ecosystems.