The evaluation of damage mechanism of unreinforced masonry buildings after Van (2011) and Elazig (2010) Earthquakes

Creative Commons License


11th International Conference on Damage Assessment of Structures (DAMAS), Ghent, Belgium, 24 - 26 August 2015, vol.628 identifier identifier

  • Publication Type: Conference Paper / Full Text
  • Volume: 628
  • Doi Number: 10.1088/1742-6596/628/1/012066
  • City: Ghent
  • Country: Belgium
  • Hacettepe University Affiliated: Yes


On March 8th, 2010 Karakocan-Elazig earthquake of magnitude 6.0 occurred at a region where masonry and adobe construction is very common Karakocan-Elazig is located in a high seismicity region on Eastern Anatolian Fault System (EAFS). Due to the earthquake, 42 people were killed and 14'113 buildings were damaged. Another city, Van located at South east of Turkey is hit by earthquakes with M = 7.2 occurred on October 23rd, 2011 at 13:41 (local time), whose epicenter was about 16 km north of Van (Tabanli village) and M = 5.6 on November 9th, 2011 with an epicenter near the town of Edremit, south of Van and caused the loss of life and heavy damages. Both earthquakes killed 644 people and 2608 people were injured. Approximately 10'000 buildings were seriously damaged. There are many traditional types of structures existing in the region hit by earthquakes (both Van and Elazig). These buildings were built as adobe, unreinforced masonry or mixed type. These types of buildings are very common in rural areas (especially south and east) of Turkey because of easy workmanship and cheap construction cost. Many of those traditional type structures experienced serious damages. The use of masonry is very common in some of the world's most hazard-prone regions, such as in Latin America, Africa, the Indian subcontinent and other parts of Asia, the Middle East, and southern Europe. Based on damage and failure mechanism of those buildings, the parameters affecting the seismic performance of those traditional buildings are analyzed in this paper. The foundation type, soil conditions, production method of the masonry blocks, construction method, the geometry of the masonry walls, workmanship quality, existence of wooden beams, type of roof, mortar between adobe blocks are studied in order to understand the reason of damage for these types of buildings.