IEEE Transactions on Circuits and Systems II: Express Briefs, vol.71, no.4, pp.2379-2383, 2024 (SCI-Expanded)
Levenberg-Marquardt (LM) algorithm is a powerful approach to optimize the parameters of a neural network (NN). Given a training dataset, the algorithm synthesizes the best path toward the optimum. This paper demonstrates the use of LM optimization algorithm when there are more than one dataset and on/off type switching of NN parameters is allowed. For each dataset a pre-selected set of parameters are allowed for modification and the proposed scheme reformulates the Jacobian under the switching mechanism. The results show that a NN can store information available in different datasets by a simple modification to the original LM algorithm, which is the novelty introduced in this study. The results are verified on a regression problem.