Nanoparticles and Nanostructured Films with TGF-beta 3: Preparation, Characterization, and Efficacy


BAYSAL İ., Ozcelikay G., YABANOĞLU ÇİFTÇİ S., Ucar B. I., Gencer A., ARICA YEGİN B.

AAPS PHARMSCITECH, cilt.22, sa.6, 2021 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 22 Sayı: 6
  • Basım Tarihi: 2021
  • Doi Numarası: 10.1208/s12249-021-02097-5
  • Dergi Adı: AAPS PHARMSCITECH
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Biotechnology Research Abstracts, EMBASE, International Pharmaceutical Abstracts, MEDLINE
  • Anahtar Kelimeler: TGF-beta 3, Modified solvent displacement method, Nanoparticle, Polymeric film, Wound healing, TRANSFORMING GROWTH FACTOR-BETA-3, RELEASE, FORMULATIONS, NANOSPHERES
  • Hacettepe Üniversitesi Adresli: Evet

Özet

TGF-beta 3 has been reported to have a strong therapeutic efficacy in wound healing when externally administered, but TGF-beta 3's active form is rapidly metabolized and removed from the body. Therefore, a drug delivery system that can provide a new non-toxic and an effective treatment that could be locally applied and also be able to protect the stability of the protein and provide controlled release is required. The aim of the study is to prepare and characterize nanoparticles and nanostructured films with TGF-beta 3 and to evaluate in vitro cytotoxicity of the loaded nanoparticles. PCL-based films containing TGF-beta 3 or TGF-beta 3-loaded PLGA nanoparticles were prepared with non-toxic modified solvent displacement method. The particle size and protein loading efficiency of TGF-beta 3-loaded PLGA nanoparticles were 204.9 +/- 10.3 nm and 42.42 +/- 2.03%, respectively. In vitro release studies of TGF-beta 3-loaded PLGA nanoparticle formulations revealed that the protein was completely released from the nanoparticles at the end of 24 h. In vitro release profile of film formulation containing TGF-beta 3-loaded nanoparticles was similar. TGF-beta 3 released from nanoparticles do not have a significant effect on proliferation of HepG2 cells demonstrating their biocompatibility. Additionally, prepared films were tested with in vivo wound healing mouse model and showed to heal significantly faster and with improved scarring. PCL films loaded with TGF-beta 3 or TGF-beta 3 nanoparticles prepared in this study may be an effective treatment approach for wound healing therapy after injury.