PHARMACEUTICALS, no.4, 2025 (SCI-Expanded)
Background/Objectives: Curcumin has well-established efficacy in a variety of disorders due to its prominent antioxidant, antiaging, anti-inflammatory, chemosensitizing, and anticancer activities. Despite its numerous benefits, curcumin exhibits low bioavailability mainly due to its poor solubility, poor absorption, rapid metabolism, and quick excretion, consequently limiting its clinical applications. In this study, we investigated the most convenient ingredients in SLNs to enhance curcumin's solubility by examining the effects of multiple independent variables simultaneously using an experimental design. Methods: After curcumin's saturation solubility was investigated, SLN formulations were produced. The optimum formulation was determined with the help of experimental design. The SLNs were characterized in terms of the particle size and distribution, zeta potential, shape, entrapment efficiency, drug loading capacity, and drug release. The cell viability and cell internalization were also evaluated. Results: An impressive synergistic effect was achieved with the combination of Brij and Gelucire 48/16, which increased curcumin's solubility in water by 452.5 times. Curcumin-loaded SLNs were successfully produced with a spherical shape and particle size of 389.3 +/- 9.95 nm. The encapsulation efficiency was directly proportionate to the amount of curcumin and the stirring speed. Curcumin in the SLNs entered the cancer cells more easily than curcumin alone. Conclusions: Our results demonstrate that the quantity of surfactant is a significant factor influencing the efficiency of drug loading. Finally, the 3:1 (Brij-Gelucire48/16) ratio markedly enhanced the loading efficiency. The cellular internalization and, consequently, the anticancer efficacy against adenocarcinomic human alveolar basal epithelial cells were improved with SLNs. This could be a promising approach for lipid-based colloidal drug delivery systems.