Composite nanofibers incorporating alpha lipoic acid and atorvastatin provide neuroprotection after peripheral nerve injury in rats

Haidar M. K., TİMUR S. S., Kazanci A., Turkoglu O. F., GÜRSOY R. N., NEMUTLU E., ...More

EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS, vol.153, pp.1-13, 2020 (SCI-Expanded) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 153
  • Publication Date: 2020
  • Doi Number: 10.1016/j.ejpb.2020.05.032
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, EMBASE, International Pharmaceutical Abstracts, MEDLINE, Veterinary Science Database
  • Page Numbers: pp.1-13
  • Keywords: Alpha lipoic acid, Atorvastatin, Composite nanofibers, Neuroprotection, Peripheral nerve injury, FUNCTIONAL-EVALUATION, OUTCOME MEASURES, REGENERATION, LESIONS, CRUSH, METHYLPREDNISOLONE, REINNERVATION, CONSTRICTION, MUSCLE, REPAIR
  • Hacettepe University Affiliated: Yes


Despite the new treatment strategies within the last 30 years, peripheral nerve injury (PNI) is still a worldwide clinical problem. The incidence rate of PNIs is 1 in 1000 individuals per year. In this study, we designed a composite nanoplatform for dual therapy in peripheral nerve injury and investigated the in-vivo efficacy in rat sciatic nerve crush injury model. Alpha-lipoic acid (ALA) was loaded into poly lactic-co-glycolic acid (PLGA) electrospun nanofibers which would release the drug in a faster manner and atorvastatin (ATR) loaded chitosan (CH) nanoparticles were embedded into PLGA nanofibers to provide sustained release. Sciatic nerve crush was generated via Yasargil aneurism clip with a holding force of 50 g/cm(2). Nanofiber formulations were administered to the injured nerve immediately after trauma. Functional recovery of operated rat hind limb was evaluated using the sciatic functional index (SFI), extensor postural thrust (EPT), withdrawal reflex latency (WRL) and Basso, Beattie, and Bresnahan (BBB) test up to one month in the post-operative period at different time intervals. In addition to functional recovery assessments, ultrastructural and biochemical analyses were carried out on regenerated nerve fibers. L-929 mouse fibroblast cell line and B35 neuroblastoma cell line were used to investigate the cytotoxicity of nanofibers before in-vivo experiments. The neuroprotection potential of these novel nanocomposite fiber formulations has been demonstrated after local implantation of composite nanofiber sheets incorporating ALA and ATR, which contributed to the recovery of the motor and sensory function and nerve regeneration in a rat sciatic nerve crush injury model.