Synthesis of a reactive polymethacrylate capillary monolith and its use as a starting material for the preparation of a stationary phase for hydrophilic interaction chromatography


Kip C., Erkakan D., Gokaltun A., Celebi B., Tuncel A.

JOURNAL OF CHROMATOGRAPHY A, cilt.1396, ss.86-97, 2015 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 1396
  • Basım Tarihi: 2015
  • Doi Numarası: 10.1016/j.chroma.2015.04.005
  • Dergi Adı: JOURNAL OF CHROMATOGRAPHY A
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.86-97
  • Hacettepe Üniversitesi Adresli: Evet

Özet

Poly(3-chloro-2-hydroxypropyl methacrylate-co-ethylene dimethacrylate), poly(HPMA-Cl-co-EDMA) capillary monolith was proposed as a reactive starting material with tailoring flexibility for the preparation of monolithic stationary phases. The reactive capillary monolith was synthesized by free radical copolymerization of 3-chloro-2-hydroxypropyl methacrylate (HPMA-Cl) and ethylene dimethacrylate (EDMA). The mean pore size, the specific surface area and the permeability of poly(HPMA-Cl-co-EDMA) monoliths were controlled by adjusting porogen/monomer volume ratio, porogen composition and polymerization temperature. The porogen/monomer volume ratio was found as the most effective factor controlling the porous properties of poly(HPMA-Cl-co-EDMA) monolith. Triethanolamine (TEA-OH) functionalized polymethacrylate monoliths were prepared by using the reactive chloropropyl group of poly(HPMA-Cl-co-EDMA) monolith via one-pot and simple post-functionalization process. Poly(HPMA-Cl-co-EDMA) monolith reacted with TEA-OH was evaluated as a stationary phase in nano-hydrophilic interaction chromatography (nano-HILIC). Nucleotides, nucleosides and benzoic acid derivatives were satisfactorily separated with the plate heights up to 20 mu m. TEA-OH attached-poly(HPMA-Cl-co-EDIVIA) monolith showed a reproducible and stable retention behaviour in nano-HILIC runs. However, a decrease in the column performance (i.e. an increase in the plate height) was observed with the increasing retention factor. Hence "retention-dependent column efficiency" behaviour was shown for HILIC mode using the chromatographic data collected with the polymer based monolith synthesized. (C) 2015 Elsevier B.V. All rights reserved.