Pseudospin and Spin Symmetric Solutions of the Dirac Equation: Hellmann Potential, Wei-Hua Potential, Varshni Potential


Creative Commons License

Arda A., Sever R.

ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, cilt.69, ss.163-172, 2014 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 69
  • Basım Tarihi: 2014
  • Doi Numarası: 10.5560/zna.2014-0007
  • Dergi Adı: ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.163-172
  • Anahtar Kelimeler: Hellmann Potential, Wei-Hua Potential, Varshni Potential, Dirac Equation, Nikiforov-Uvarov Method, Spin Symmetry, Pseudospin Symmetry, ROTATION-VIBRATION SPECTRUM, ANALYTICAL APPROXIMATIONS, SCHRODINGER-EQUATION, DIATOMIC-MOLECULES, CENTRIFUGAL, OSCILLATOR, SCHEME, TERM
  • Hacettepe Üniversitesi Adresli: Evet

Özet

Approximate analytical solutions of the Dirac equation are obtained for the Hellmann potential, the Wei-Hua potential, and the Varshni potential with any K-value for the cases having the Dirac equation pseudospin and spin symmetries. Closed forms of the energy eigenvalue equations and the spinor wave functions are obtained by using the Nikiforov-Uvarov method and some tables are given to see the dependence of the energy eigenvalues on different quantum number pairs (n, K).