Pseudospin and Spin Symmetric Solutions of the Dirac Equation: Hellmann Potential, Wei-Hua Potential, Varshni Potential


Arda A. , Sever R.

ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, vol.69, pp.163-172, 2014 (Journal Indexed in SCI) identifier identifier

  • Publication Type: Article / Article
  • Volume: 69
  • Publication Date: 2014
  • Doi Number: 10.5560/zna.2014-0007
  • Title of Journal : ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES
  • Page Numbers: pp.163-172
  • Keywords: Hellmann Potential, Wei-Hua Potential, Varshni Potential, Dirac Equation, Nikiforov-Uvarov Method, Spin Symmetry, Pseudospin Symmetry, ROTATION-VIBRATION SPECTRUM, ANALYTICAL APPROXIMATIONS, SCHRODINGER-EQUATION, DIATOMIC-MOLECULES, CENTRIFUGAL, OSCILLATOR, SCHEME, TERM

Abstract

Approximate analytical solutions of the Dirac equation are obtained for the Hellmann potential, the Wei-Hua potential, and the Varshni potential with any K-value for the cases having the Dirac equation pseudospin and spin symmetries. Closed forms of the energy eigenvalue equations and the spinor wave functions are obtained by using the Nikiforov-Uvarov method and some tables are given to see the dependence of the energy eigenvalues on different quantum number pairs (n, K).