Particle Velocity, Solids Hold-Up, and Solids Flux Distributions in Conical Spouted Beds Operating with Heavy Particles


KÜLAH G., Sari S., KÖKSAL M.

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, cilt.55, sa.11, ss.3131-3138, 2016 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 55 Sayı: 11
  • Basım Tarihi: 2016
  • Doi Numarası: 10.1021/acs.iecr.5b04496
  • Dergi Adı: INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.3131-3138
  • Hacettepe Üniversitesi Adresli: Evet

Özet

Conical spouted beds operating with high density particles have recently gained attention because of their potential use as nuclear fuel coaters for next-generation nuclear reactors. To design, scale-up, and manufacture these coaters, detailed investigation of local flow structure is of paramount importance. Therefore, in this study, local instantaneous particle velocity and solids hold-up and flux measurements were carried out in spouted beds having a wide range of cone angles (30, 45, 60) using zirconia particles (d(p) = 0.5, 1 mm; rho(p) = 6050 kg/m(3)). Effects of axial height, particle diameter, conical angle, and static bed height on local flow behavior were investigated. Comparisons were also made with the results of low-density particle studies. It is shown that particle velocity decreases and solids hold-up and flux increase along the bed height in the spout. The solids circulation is augmented as particle diameter and conical angle are decreased and static bed height is increased.