A Cascaded Unsupervised Model for PoS Tagging

BÖLÜCÜ N. , Can B.

ACM TRANSACTIONS ON ASIAN AND LOW-RESOURCE LANGUAGE INFORMATION PROCESSING, vol.20, no.1, 2021 (Journal Indexed in SCI) identifier identifier

  • Publication Type: Article / Article
  • Volume: 20 Issue: 1
  • Publication Date: 2021
  • Doi Number: 10.1145/3447759


Part of speech (PoS) tagging is one of the fundamental syntactic tasks in Natural Language Processing, as it assigns a syntactic category to each word within a given sentence or context (such as noun, verb, adjective, etc.). Those syntactic categories could be used to further analyze the sentence-level syntax (e.g., dependency parsing) and thereby extract the meaning of the sentence (e.g., semantic parsing). Various methods have been proposed for learning PoS tags in an unsupervised setting without using any annotated corpora. One of the widely used methods for the tagging problem is log-linear models. Initialization of the parameters in a log-linear model is very crucial for the inference. Different initialization techniques have been used so far. In this work, we present a log-linear model for PoS tagging that uses another fully unsupervised Bayesian model to initialize the parameters of the model in a cascaded framework. Therefore, we transfer some knowledge between two different unsupervised models to leverage the PoS tagging results, where a log-linear model benefits from a Bayesian model's expertise. We present results for Turkish as a morphologically rich language and for English as a comparably morphologically poor language in a fully unsupervised framework. The results show that our framework outperforms other unsupervised models proposed for PoS tagging.