Alginate and chitosan-coated ferulic acid-loaded selenium nanoparticles: synthesis, characterization, and anticancer activity against MDA-MB-231 breast cancer cells


Cetin D. P., SEÇME M., İLHAN H., SAĞLAM N.

MEDICAL ONCOLOGY, sa.6, 2025 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Basım Tarihi: 2025
  • Doi Numarası: 10.1007/s12032-025-02756-8
  • Dergi Adı: MEDICAL ONCOLOGY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, BIOSIS, CINAHL, MEDLINE
  • Hacettepe Üniversitesi Adresli: Evet

Özet

Triple-negative breast cancer (TNBC), characterized by its aggressive behavior and lack of targeted therapies, remains a major therapeutic challenge. This study presents the synthesis and evaluation of ferulic acid-loaded selenium nanoparticles (FA-SeNPs) coated with alginate (Alg@FA-SeNPs) and chitosan (CS@FA-SeNPs) as potential nanocarriers for TNBC treatment. Ferulic acid was selected for its pro-apoptotic and anti-metastatic properties, despite its limited bioavailability. Encapsulation in SeNPs enhanced its stability and delivery efficiency. Alg@FA-SeNPs exhibited greater cytotoxicity (IC50: 103.6 mu g/mL) than CS@FA-SeNPs (IC50: 178 mu g/mL) after 48 h. Gene expression analyses showed significant H2AX upregulation with Alg@FA-SeNPs, indicating genotoxic stress, and marked Bcl-2 downregulation with CS@FA-SeNPs, favoring apoptosis. Zeta potential measurements confirmed near-neutral surface charge for Alg@FA-SeNPs and strong positive charge for CS@FA-SeNPs, supporting good colloidal stability. These findings highlight the therapeutic promise of biopolymer-coated SeNPs, particularly alginate-coated formulations, as targeted drug delivery systems for TNBC.