On Powers of the Compositions Involving Dirac-Delta and Infinitely Differentiable Functions


ÖZÇAĞ E.

RESULTS IN MATHEMATICS, cilt.73, sa.1, 2018 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 73 Sayı: 1
  • Basım Tarihi: 2018
  • Doi Numarası: 10.1007/s00025-018-0766-0
  • Dergi Adı: RESULTS IN MATHEMATICS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Hacettepe Üniversitesi Adresli: Evet

Özet

The symbol delta(k) (f(x)) for an infinitely differentiable function f having a simple root is meaningless in the theory of Schwartz distributions. In this work we first of all give meaning to the symbol delta(k) (f(x)) via neutrix calculus due to van der Corput (J Anal Math 7: 291-398, 1959). Then we consider the case that f is the s-th power of a function g(x) having a simple single root and the particular case delta(k) (x(+)(lambda)) for lambda > 0, k is an element of N. Finally we also give meaning to the symbols H(delta(k)), H-(r)(delta(k)), delta((r))(delta(k)) and G(delta(k)), where H denotes the Heaviside function and G is a bounded continuous summable function on R.