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Abstract

Mustafa Aykut Attar: Entrepreneurship, Knowledge, and the Industrial Revolution

(Under the direction of Lutz A. Hendricks)

This dissertation constructs and studies a simple unified growth model that explains the

timing of the industrial revolution through entrepreneurship and entrepreneurs’ previ-

ously unexplored role in the accumulation of useful knowledge.

Three premises are responsible for the main results: First, inventions and discoveries,

i.e. two forms of useful knowledge, are differentiated such that a larger stock of discov-

eries implies a higher level of inventive productivity. Second, entrepreneurs own and

manage the firms operating in the innovative sector of the economy, and they thus may

find it optimal to spend some of their scarce time endowment to inventive activity by de-

creasing the time allocated to routine management otherwise. Third, the stock of useful

discoveries expands in time through the process of collective discovery. Entrepreneurs,

during their lifetime, serendipitously perceive new useful discoveries and share what they

discover with each other in their common social environment.

Two key results are that (i) the optimal level of inventive effort by entrepreneurs is

zero if the stock of useful discoveries is sufficiently small, and (ii) an industrial revolution,

i.e. an endogenous switch from zero to positive inventive effort, is an inevitable outcome

of the process of collective discovery even though it might be delayed for long epochs of

stagnation. Population growth and structural transformation, i.e. two well-documented

aspects of the transition from stagnation to growth, are not only affected by technological

progress as usual but also determine how fast the economy moves towards its invention

threshold.

Calibrated to match some key data moments of England’s economic development
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during the last 350 years, the model performs reasonably well in explaining the main

patterns of the transition from stagnation to growth, i.e. the demographic transition,

urbanization, industrialization and the acceleration of technological progress. Counter-

factual experiments show that even small deviations from the benchmark model may

create large effects on the timing of the industrial revolution.
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Whether we define the entrepreneur as an "innovator" or in any other
way, there remains the task to see how the chosen definition works out in
practice as applied to historical materials. In fact it might be argued that
the historical investigation holds logical priority and that our definitions
of entrepreneur, entrepreneurial function, enterprise, and so on can only
grow out of it a posteriori. Personally, I believe that there is an incessant give
and take between historical and theoretical analysis and that, though for the
investigation of individual questions it may be necessary to sail for a time
on one tack only, yet on principle the two should never lose sight of each
other. In consequence we might formulate our task as an attempt to write a
comprehensive history of entrepreneurship.

Joseph A. Schumpeter

From his 1949 address at the Research Center in Entrepreneurial History
Cited by Lazonick (1991, pp. 271-272)
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Chapter 1

Introduction

Why did the Industrial Revolution start when it did? Why not earlier or later? Why was

the stagnation of living standards so prolonged? Which factors did keep today’s developed

societies and others in a quasi-trap of poverty for several millennia?

In the last decade, many growth theorists have returned to this timing question with

the methodology of Galor and Weil’s (2000) Unified Growth Theory: A unified model is

the one that not only features stagnation and growth equilibria but also accounts for the

factors that trigger and govern the gradual transition from the former to the latter.

This dissertation constructs and studies a simple unified growth model that explains

the timing of the Industrial Revolution through entrepreneurship and entrepreneurs’ role

for the accumulation of useful knowledge. The growth of living standards in the model is

due to new inventions created by entrepreneurs who behave very much like Schumpeter’s

(1934) "entrepreneur-inventor"s, and the start of the industrial revolution is an endoge-

nously occurring switch from an equilibrium regime of zero inventive effort to that of

positive inventive effort.

What motivates the emphasis on entrepreneurial invention, in addition to the Schum-

peterian view of the first Industrial Revolution suggested by Solo (1951), Baumol (1990),

Murphy et al. (1991) and Mokyr (2010), is Meisenzahl and Mokyr’s (forthcoming) proso-

pographical evidence on 759 British inventors born between 1660 and 1830. Among 598

inventors with a known business ownership status, only 88 inventors (around 15%) were



employed as non-managers, and 467 of them (around 78%) were business owners. The

latter statistic suggests that understanding the role of inventors who were incentivized by

profit motive during the Industrial Revolution may be of prime importance, and this dis-

sertation develops a simple model that makes entrepreneurs’ role explicit unlike existing

unified growth models.

Three premises are responsible for the main results: First, building on Mokyr’s

(2002) theory of useful knowledge, inventions and discoveries are differentiated such that,

for a given level of effort directed to inventive activity, it is less likely to be success-

ful in achieving a given number of inventions if the number of available discoveries is

smaller. By this premise, recently exploited by O’Rourke et al. (2008) and Strulik (2009)

as well, the model endogenizes the productivity term of a standard invention technol-

ogy that exhibits constant-returns-to-scale with respect to its rival labor input. Second,

entrepreneurs in the model establish and manage their firms in a perfectly competitive

sector that produces the single consumption good in the economy. That entrepreneurs

appropriate positive profit by managing their own firms implies that it may be optimal

for entrepreneurs to allocate some of their scarce time endowment to inventive activity

while decreasing the time spent on routine management, hence the term entrepreneurial

invention as in Grossmann (2009). Finally, the stock of useful discoveries expands in time

through the process of collective discovery. Entrepreneurs, during their lifetime, serendip-

itously perceive new useful discoveries, i.e. new knowledge components about natural

phenomena underlying the production processes but not being themselves inventions,

and share what they discover with each other in their common social environment. This

premise is a way to formalize, albeit imperfectly, what Mokyr (2002) calls industrial en-

lightenment, and it is motivated, among others, by Jacob (1997), Bekar and Lipsey (2004)

and Landes (2006) who emphasize the creation and the diffusion of useful knowledge

among British/European entrepreneurs and capitalists.

Two key results follow from these three premises. First, there exists an inven-

tion threshold: If the stock of useful discoveries is sufficiently small, given (exogenous)

2



longevity, the optimal level of inventive effort by entrepreneurs is zero. Second, the

endogenous mass of entrepreneurs through collective discovery determines how fast the

economy moves to its invention threshold. Provided that an industrial revolution is possi-

ble, it is an inevitable outcome of the process of collective discovery even though it might

be delayed for long epochs of stagnation. The question is thus what factors explain the

mass of entrepreneurs.

To answer this in a parsimonious way within a unified growth framework, the model

incorporates two well-documented aspects of the transition from stagnation to growth,

i.e. population growth and structural transformation, since these determine the mass of

entrepreneurs through the use of economy-wide resources for different tasks.

The model closely follows Jones (2001), Strulik and Weisdorf (2008) and

de la Croix and Licandro (2009) to deliver the following story of demographic change

in the simplest way: Population growth is endogenous through optimal fertility choice

in a two-generation framework. Given exogenous patterns of child survival and adult

longevity, the endogenous evolution of economic prosperity governs the dynamics of

a demographic transition. Specifically, a minimum consumption constraint implies an

upper limit of fertility when the economy is sufficiently poor. An increase in incomes,

within this regime of fertility choice, leads to higher fertility. Once the economy becomes

sufficiently rich, however, this income effect vanishes completely. The optimal level of

fertility declines with technological progress since time, becoming more expensive, in-

creases the unit time cost of a born child. Parents’ strict preference towards reproductive

success, i.e. leaving at least one surviving child, implies a constant level of population

for sufficiently high income levels. Since earth as a closed system has a finite carrying

capacity of people in reality, a constant level of population in the long-run is a desired

feature. Yet, contrary to Peretto and Valente’s (2011) model that explicitly considers the

role of natural resource scarcity, the model simply predicts a constant level of population

in the long-run through preferences towards reproductive success. The model also devi-

ates from the quality-quantity trade-off models of Galor and Weil (2000) and Lucas (2002)

3



by non-homothetic preferences that eliminate the income effect on fertility completely

for sufficiently high income levels. This is, of course, not to say that the endogenous

natural resource scarcity and the quality-quantity trade-off are not important for the de-

mographic transition, but the model is greatly simplified by these deviations and still

returns an empirically plausible story of demographic change.

The way in which the model incorporates structural transformation is similar to

that of Hansen and Prescott (2002) and Bar and Leukhina (2010a) such that (i) a single

consumption good is produced with two technologies, i.e. traditional/rural and mod-

ern/urban technologies, and (ii) the traditional technology admits land as an input in

fixed supply. In contrast with Hansen and Prescott (2002) and Bar and Leukhina (2010a),

on the other hand, (i) technological progress in the modern sector is endogenous through

entrepreneurial invention and (ii) a spillover effect from the modern to the traditional

sector endogenizes productivity change in the traditional sector as in Desmet and Parente

(2009) at some period after the industrial revolution. Under an inequality restriction that

governs the growth of relative productivity in the long-run, the traditional sector faces

an eventual demise. The mapping from the model to the data associates the declines of

the labor and the output shares of the traditional sector in the model respectively with

the rises of urbanization and industrialization as in Bar and Leukhina (2010a).

The trajectory of economic development this dissertation predicts, consistent with

the conventional wisdom of unified growth theory, is as follows: Adult longevity, child

survival probability, the stock of useful discoveries, and urbanization rate are all at their

historically minimum levels in the very beginning. Inventive activity is not optimal, and

the modern/urban sector is small. Poverty is severe, limiting net fertility and population

growth. In time, however, the minuscule increases in adult longevity and child survival

probability, if any, minimally increase net fertility, and the stock of discoveries keeps

expanding albeit at a still slow rate due to the small number of entrepreneurs. This pro-

cess continues for sufficiently many periods to eventually make inventive effort optimal.

An industrial revolution starts. Increasing wages imply faster urbanization and higher
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gross/net fertility first. Once productivity is sufficiently high, however, adult individuals

find it too costly to produce too many children and limit fertility. Urbanization on the

other hand keeps accelerating to make the mass of entrepreneurs even larger and collec-

tive discovery even more productive. Thus, industrialization accelerates. The asymptotic

equilibrium features perpetual growth of labor productivity and output per capita with

a strictly positive asymptotic growth rate and a constant level of population.

The quantitative analysis of the model calibrates the structural parameters and the

initial values of state variables to match the observed patterns of economic development

in England from 1650 to 2000. England is not only the first industrialized economy

but also the one for which a sufficiently large set of data exists. The simulations for the

period from 1650 to 2000 show that the model economy performs reasonably well in

explaining population and output per capita dynamics and the rises of urbanization and

industrialization. The calibrated model is next used for some counter-factual experiments

on the timing of the industrial revolution as in Desmet and Parente (2009). The results,

interpreted only as suggestive and only for the timing of England’s industrial revolution,

indicate that small deviations from the benchmark model may create large timing effects.

The contribution of this dissertation to the literature can be described as follows: First

and the foremost, the dissertation shows that thinking a bit seriously about the produc-

tivity term of an otherwise standard invention technology and bringing the entrepreneur

back to the scene of economic development allow us to understand why purposeful in-

vention may not be optimal for a very long episode of history and why an industrial rev-

olution is inevitable. Entrepreneurs’ dual role for inventions and discoveries in a unified

growth framework, motivated strongly by the anecdotal and prosopographical evidence,

is the previously unexplored mechanism proposed in this dissertation. Second, the model

eliminates both the weak and the strong scale effects of population size as in Grossmann

(2009). The absence of the weak scale effect is important because the role of population

size during the modern growth regime remains ambiguous in most unified growth mod-

els. The strong scale effect, on the other hand, is ruled out as the mass of entrepreneurs
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plays the role of the horizontal dimension of technological progress of the second-

generation Schumpeterian models of Young (1998), Peretto (1998a), Aghion and Howitt

(1998, Ch. 12) and Dinopoulos and Thompson (1998). Third, due to stochastic invention

and ex post heterogeneity across firms in the modern sector, the model explains, unlike

other unified growth models, (i) why more innovative firms on average are larger and

why the size distribution of innovative firms are skewed; two well-known regularities

most recently reiterated, respectively, by Akcigit and Kerr (2010) and Klette and Kortum

(2004). Finally, although the model does not incorporate human capital in its usual sense,

that it does not crucially require a rise in the demand for embodied skills for the industrial

revolution to start, as that of O’Rourke et al. (2008), answers Clark’s (2005) criticism of

unchanged skill premium during the first Industrial Revolution.

The plan of the dissertation is as follows: The next chapter provides a discussion of

the related literature to more clearly locate the contribution of this dissertation. Chapter

3 introduces the model economy. Chapter 4 defines and analyzes the uniquely existing

static, dynamic and asymptotic equilibria of the model and then characterizes a possible

equilibrium path from a unified growth perspective. Chapter 5 provides some tentative

(analytical) results on the timing of the industrial revolution. Chapter 6 presents a quan-

titative analysis of the model economy. Chapter 7 provides a discussion of some aspects

of the model and manipulates over some possible extensions. Chapter 8 concludes with

some final remarks.
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Chapter 2

The Related Literature

This chapter presents a discussion of the related literature in two sections: First, the no-

table contributions to the literature studying the transition from stagnation to growth

are mentioned, and the relation of the dissertation with this literature is specified. Sec-

ond, scholars who have contributed earlier on the three fundamental premises of the

model, i.e. the discovery-invention distinction, entrepreneurial invention, and collective

discovery, are credited, and the contribution of this dissertation is described.

2.1 From Stagnation to Growth

Poverty trap models of Murphy et al. (1989), Azariadis and Drazen (1990), Becker et al.

(1990) and Matsuyama (1991) predict multiple steady-state equilibria, but these models

leave the mechanism that explains the transition from stagnation to growth unexplored.1

An early study that deals explicitly with the transition is of Goodfriend and McDermott

(1995) who argue that there exists a critical mass of population that makes industri-

alization efficient through the market size effect. Tamura (1996) extends the model

of Becker et al. (1990) by a clearer account of transitional dynamics. Building on

1. Each of these models focuses on a different mechanism that generates development thresholds and mul-
tiple equilibria. Murphy et al. (1989) emphasize the role of demand spillovers across industries by for-
malizing the Big Push argument. Azariadis and Drazen (1990) study the externalities in the accumula-
tion of human capital that create threshold effects. Building on the fertility theory of Becker and Barro
(1988), Becker et al. (1990) utilize the quality-quantity trade-off of human capital accumulation to gen-
erate Malthusian stagnation and modern growth as two (stable) steady-state equilibria. Matsuyama
(1991) develops a two-sector model of occupational choice with increasing returns in manufacturing.



Azariadis and Drazen’s (1990) model, Arifovic et al. (1997) endow agents by adaptive

learning that eventually triggers the takeoff. Acemoglu and Zilibotti (1997) explain the

minuscule rates of capital accumulation and economic growth during the early stages of

development by the absence of complete financial markets that diversify risk. All these

early models, however, fail to account for the demographic transition.

Galor and Weil’s (2000) model, for the first time, successfully explains not only the

prolonged Malthusian stagnation and the endogenous occurrence of an industrial revo-

lution but also the demographic transition. The authors show that, once the Malthu-

sian constraint of subsistence consumption and the quality-quantity trade-off of human

capital accumulation in the fashion of, e.g., Becker et al. (1990) are conveniently inte-

grated with the skill-biased technological change and with the slow pace of technology-

population interaction as in Boserup (1965) and in Kremer (1993), the desired result fol-

lows; a gradual and endogenously occurring phase transition from stagnation to growth

that does not require a major shock.

Notable contributions to the literature include that of Hansen and Prescott (2002)

who study the decline of the land-based sector and the rise of industrialization within

a neoclassical framework with exogenous technological progress. Lucas (2002) merges

this framework with endogenous fertility choice and human capital accumulation. The

emphasis on the demographic transition as a result of endogenous fertility choice is main-

tained by Jones (2001) who extends the analysis, for the first time, by a very simple

formulation of incentives to innovate. The decline of agriculture is studied (i) within

the framework of Hansen and Prescott (2002) but with endogenous growth in manu-

facturing sector by Kögel and Prskawetz (2001) and (ii) within Galor and Weil’s (2000)

framework by Tamura (2002). The analysis of the demographic transition is extended

further by Hazan and Berdugo (2002) and Doepke (2004) who introduce child labor, by

Boldrin and Jones (2002) who revisit the old-age security hypothesis with game theoret-

ical notions, and by Lagerlöf (2003) who endogenizes mortality. Galor and Moav (2002)

present an evolutionary unified model of economic growth in which the distribution
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of the valuations for human capital accumulation across individuals is subject to natural

selection.2

A majority of unified growth models either do not utilize the invention of new

products and new processes as the source of technological progress at all or productiv-

ity change is incorporated in a reduced-form way such that the mechanism of endoge-

nous technological progress remains as a black-box. Motivated partly by this dissatis-

faction and partly by the critiques of some economic historians such as Mokyr (2002),

Crafts (2005), Lipsey et al. (2005) and Clark (2007) who keep stressing the role of inven-

tions for understanding the transition from stagnation to growth, some recent unified

growth models explicitly deal with the incentives leading agents to innovate, be them

individual "consumer/producer"s or firms. O’Rourke et al. (2008) study the transition

from unskilled-labor-biased technological change to the skill-biased technological change.

Desmet and Parente (2009) put the emphasis on the evolution of market competition

that, once sufficiently intensified, activates purposeful innovation by monopolistic firms.

Milionis and Klasing’s (2009) model, featuring "consumer/producer"s, explains why hu-

man capital accumulation eventually leads to purposeful invention. In Bar and Leukhina

(2010b), individuals optimally choose the time they spend on innovative activities while

the main emphasis is directed to the effects of mortality on knowledge transmission. The

last but not the least, Madsen et al. (2010) show that the last four hundred years of British

economic growth can best be understood as a story of endogenous technological progress.

The model constructed in this dissertation contributes to this second strand of the

unified growth literature that endogenizes technological progress with an explicit inven-

tion technology and profit-seeking agents. The model is truly unified in the sense that

the gradual phase transition from stagnation to growth occurs endogenously. Most im-

portantly, the new mechanism proposed features entrepreneurs’ dual role for inventions

and discoveries.

2. Unified growth literature is by now large and diversified, and a complete review is not central for the
purposes of this dissertation. See Galor (2005, 2010) for two useful surveys of the literature.
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Table 2.1: Two Forms of Useful Knowledge in Mokyr’s (2002) Theory

Propositional Knowledge Prescriptive Knowledge
Epistemic Technical
Laws and Principles Blueprints and Recipes
What-Knowledge How-Knowledge
Discoveries Inventions

2.2 Three Fundamental Premises

The conceptual framework of useful knowledge that this dissertation builds upon, with

discoveries and inventions being distinct knowledge forms, is due to Mokyr (2002). In

his theory, discoveries are propositional forms of knowledge that do not have direct tech-

nological applications. Discoveries are laws and principles that answer "What?" ques-

tions about natural phenomena underlying the production processes. Inventions, in

contrast, are prescriptive in the sense that they provide answers to "How?" questions;

inventions take the forms of blueprints and recipes. Table 2.1 presents this conceptual

framework, and Table 2.2 remarks the two roles of useful knowledge studied in this

dissertation. Other than Mokyr (2002), the role of the discovery-invention distinction

and the usefulness of discoveries for inventive activity have been emphasized by Landes

(1969), Rosenberg (1974), Nelson (1982) and Easterlin (1995) in explaining the history

of technological progress. In one context, Weitzman (1998, p. 345) has suggested that

knowledge accumulation has distinct recombinant and productivity aspects. The former

corresponds, in a sense, to the role of discoveries for inventions. With reference to knowl-

edge capital, Lucas (2002, p. 12) has asked "[w]hat can be gained by disaggregating into

two or more knowledge-related variables." The model studied in this dissertation answers

this question by showing that, when the productivity of inventive effort is endogenous

to how large the stock of useful discoveries is, purposeful and costly invention may re-

main suboptimal. The distinction between discoveries and inventions is also emphasized

by Haruyama (2009) in an endogenous growth model with perfectly competitive innova-

tion. Howitt and Mayer-Foulkes (2005), O’Rourke et al. (2008) and Strulik (2009) are the
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Table 2.2: The Usefulness of Knowledge: A Simple Framework

Discoveries Inventions
useful in increasing useful in increasing
the productivity of the productivity of
inventive effort worker hours

ones who have incorporated the distinction into the formal analysis of unified growth.

However, the dual role of entrepreneurship for useful knowledge remains unexplored in

a unified model with population growth and structural transformation. This is what this

dissertation attempts to deliver.

At least since Schumpeter (1934), "entrepreneur-inventor"s are leading actors of the

narratives of the Industrial Revolution. Solo (1951), Baumol (1990), Murphy et al. (1991)

and Mokyr (2010), among others, have argued specifically that entrepreneurial invention

was indeed the engine of technological progress during the first Industrial Revolution

long before the rise of modern R & D lab. Peretto (1998b) has emphasized the distinction

between "entrepreneurial invention" and corporate R & D in a second generation Schum-

peterian model. Michelacci (2003) has previously studied the role of entrepreneurial

skills in bringing inventions to markets. From another perspective, Doepke and Zilibotti

(2008) and Galor and Michalopoulos (2009) have studied the role of entrepreneurial traits

for long run economic development. This model, differently from all these, incorpo-

rates both occupational choice and entrepreneurial invention within a unified growth

setting. Two-occupation framework of the model is similar to, and even simpler than,

those of Lucas (1978), Murphy et al. (1991) and Michelacci (2003), and the formulation

of entrepreneurial invention under perfect competition shares similarities with the treat-

ments of Hellwig and Irmen (2001), Grossmann (2009) and Haruyama (2009).

The process of collective discovery by entrepreneurs has been described by Landes

(2006, p. 6) as "the seventeenth-century European mania for tinkering and improving."

Bekar and Lipsey (2004) go further to argue that the diffusion of Newtonian mechanics

among British industrialists was the prime cause of the first Industrial Revolution. A
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similar argument on the diffusion of scientific culture, again with an emphasis on British

success, is made by Jacob (1997). Kelly (2005) develops a network model that analyzes

this type of collective learning for the industrial revolution. Lucas (2009) also emphasizes

collective learning in a model that differentiates propositional knowledge from produc-

tivity. O’Rourke et al. (2008) and Milionis and Klasing (2009), with environments simi-

lar to that of Galor and Weil (2000), link the accumulation of propositional knowledge to

human capital accumulation respectively through the number of high-skilled individuals

and the individual-level stock of skills. Howitt and Mayer-Foulkes (2005) assume that the

skill level of entrepreneurs is proportional to the average productivity associated with

intermediate inputs of production. The last but not the least, Strulik (2009) suggests that

propositional knowledge grows through learning-by-doing at the firm level. What dif-

ferentiates this paper’s formulation of propositional knowledge is the role of the mass of

entrepreneurs. More entrepreneurs with longer lives create more useful discoveries given

the quality of creating and diffusing these discoveries. This type of scale effect by which

knowledge growth depends not on the mass of entire population but instead on a certain

mass of urban population is emphasized more recently by Crafts and Mills (2009).
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Chapter 3

The Model Economy

This chapter first introduces the model environment and then specifies market and own-

ership structures. Next follow the occupational structure and the decision problems

solved by each occupational group. Market clearing conditions at the end close the model.

The model economy features some simplifications that are not uncommon in the uni-

fied growth literature: The economy is closed, there does not exist a political authority,

and there is no physical capital. This is an economy of a single consumption good pro-

duced (i) with a traditional/rural technology to which land is an essential input and (ii)

with a modern/urban technology that is utilized by entrepreneurs.

3.1 Environment

The calendar time of the model economy, denoted by t , is discrete with an infinite hori-

zon: t ∈N+.

3.1.1 Demographic Structure

There exist two overlapping generations: Individuals who are adults in period t give birth

to children at the beginning of period t , i.e. at the beginning of their adulthood. Their

surviving children become adults in period t + 1.



Fertility

Reproduction is asexual, and bt ∈ R++ denotes the total number of children a generic

adult in period t optimally chooses to give birth to, i.e. the gross fertility per adult.

Note that bt , not being discrete in the model, represents the average gross fertility among

period-t adults, and the total fertility rate of the economy is equal to 2bt under the as-

sumption that the sex ratio of population is 1/2.

Survival Probability

The survival of a child born at the beginning of period t is a Bernoulli event with the

survival probability st ∈ [0,1]. For simplicity, (i) st is common across period-t children,

(ii) st is known by period-t adults with certainty, and (iii) the sequence {st}t∈N+ of survival

probabilities is exogenous. Strongly motivated by actual data from developed economies,

{st }t∈N+ is assumed to be a non-decreasing sequence satisfying

s0 < 1 and s ⋆ ≡ lim
t→∞

st = 1

At t = 0 that corresponds to some distant past, only some of the children born to an

adult survive to adulthood. The distant future, on the other hand, represents an era at

which the health/mortality revolution is complete so that all children survive.

Population Growth

Notice that, given bt and st , the gross growth rate of adult population, i.e. the net fertility

per adult, satisfies nt ≡ st bt . Denote by Nt ∈ R++ the adult population in period t and

assume that N0 > 0. The law of motion of Nt is

Nt+1 = nt Nt (3.1)
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Adult Longevity

Not less important than the number Nt of adult individuals is how long they live on

average since labor is an input of the production and the invention technologies.3 The

simplest way of capturing the role of adult longevity within this two generations frame-

work is to assume, as in Hazan and Zoabi (2006), that all period-t adults live a frac-

tion ℓt ∈ [0,1] of period t . For simplicity, again, (i) ℓt is common across period-t

adults, (ii) ℓt is known by period-t adults with certainty, and (iii) the sequence {ℓt}t∈N+
of longevity fractions is exogenous. Also motivated by actual data from developed

economies, {ℓt}t∈N+ is assumed to be a non-decreasing sequence satisfying

ℓ0 < 1 and ℓ⋆ ≡ lim
t→∞

ℓt = 1

The reasoning behind the survival probability thus applies to adult longevity: In

some distant past, adult individuals do not live up to the maximum lifespan. When

the health/mortality revolution is complete in distant future, however, they enjoy the

longest life.

3.1.2 Endowments

Labor

Normalizing the length of a period to unity implies that period-t adults have a time en-

dowment of ℓt units each. This time endowment is the only source of their homogeneous

labor force. Children in contrast do not have a time endowment, and they remain idle

until they become adults next period.

3. Adult longevity plays a key role for the timing of the industrial revolution in this model by affecting
the optimality of inventive effort for any t .
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Land

Land is a production factor of the traditional technology, and the total land endowment

of the economy is normalized to unity. What fraction of individuals own land and at

what proportions, on the other hand, are of minor importance from an analytical point

of view since, as we shall see below, the model builds upon a very simplified view of what

happens in the sector using the traditional technology as in Galor and Weil (2000) and

Desmet and Parente (2009).

3.1.3 Preferences

A generic period-t adult derives lifetime utility from her consumption Ct and net fertility

nt .
4 The utility function representing these preferences is

U (Ct , nt )≡Ct +φ ln(nt ) φ> 0 (3.2)

with boundary restrictions

Ct ≥ γ > 0 (3.3)

nt ≥ 1 (3.4)

Strulik and Weisdorf (2008) and de la Croix and Licandro (2009) build on this type of

non-homothetic preferences to understand the various aspects of the demographic tran-

sition. Here, a discussion of the notions embedded in (3.2)-(3.4) is necessary:

The preference parameter φ > 0 determines the strength of parental desire towards

reproduction. Such a parameter is a common element of economic models of demogra-

phy.

The non-homotheticity of preferences is important for two reasons: First, the risk

neutrality of preferences with respect to Ct eliminates the direct income effect on fertil-

4. Note that choosing nt is identical to choosing bt since st is known with certainty.
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ity. This guarantees fertility to decrease with the cost of reproduction when the econ-

omy is sufficiently rich (Ct > γ ). Fertility theories based on homothetic preferences

face difficulties to generate a negative fertility-income relationship (Jones et al., 2011),

and the model assumes away such difficulties, in part, with these non-homothetic pref-

erences. The second reason of adapting risk neutral preferences with respect to Ct is

to simplify the decision problem of entrepreneurs. As we shall see below, the decision

toward entrepreneurial invention is in essence an expected utility problem with occupa-

tional choice.

The preference parameter γ > 0 in (3.3) denotes some baseline or "subsistence" level

of adult consumption as in Galor and Weil (2000), Jones (2001) and others; γ is the level

of consumption that partially determines the upper bound of fertility when the economy

is sufficiently poor (Ct = γ ). It shall be clear below that (3.3) simply reintroduces a direct

income effect on fertility for a sufficiently poor economy: An adult’s consumption is her

first priority, and she has to adjust her fertility accordingly.5

The inequality in (3.4) represents the parental preference for reproductive success in

transmitting genes to the next generations. What motivates this is the long run stability

of population levels observed in nature. A successful parent is the one who leaves at least

one surviving child.6 (3.4) is a very simple way of introducing reproductive success in a

model of fertility choice, but this suffices to produce the desired property:7 The baseline

level of net fertility is equal to unity as in Jones (2001), and this implies a stabilizing level

of population when the economy is sufficiently rich.

5. In this model, γ represents subsistence not merely in biological terms; Landes (1969, pp. 13-14) and
Voth (2003, p. 224) argue that Western European economies in general and England in particular were
richer than many other economies around the world on the eve of the Industrial Revolution.

6. Recall that all surviving children become fecund at the beginning of their adulthood by construction.

7. de la Croix and Licandro (2009) and Strulik and Weisdorf (2011) incorporate reproductive success, re-
spectively, into continuous and discrete time environments where parents choose not only the number
of children they have but also the likelihood of these children’s survival. This, in a sense, is a biological
version of quantity-quality trade-off. With exogenous (st ,ℓt ), the model abstracts from this.

17



3.1.4 Technologies

Reproduction

There are two inputs of reproduction: Each child born, whether she survives or not,

requires ρ > 0 units of time to be raised to adulthood and consumes ψ > 0 units of

consumption good provided by her parent.8

Time cost of reproduction is a common theme of a vast majority of fertility theo-

ries, and it plays an essential role in this model of demographic transition. Simply, the

cost of reproduction increases in an economy that records sustained increases in labor

productivity since a unit of time becomes more expensive.

Goods cost of reproduction, albeit not necessary for fertility to decline in advanced

stages of economic development, adds to the consistency of the model in which adults

must consume a minimum amount of γ > 0.

The Modern Technology

The following mention of firms and entrepreneurs is necessary to introduce the remain-

ing technologies of the model with maximum clarity: In any competitive equilibrium of

this model economy, (i) there exists a set [0, Et] of firms that operate with the modern

technology of production, and (ii) each firm using the modern technology is owned by

an entrepreneur. Hence, the set of entrepreneurs is also [0, Et] where Et < Nt is the

endogenously determined mass of entrepreneurs.9

8. In contrast with existing models featuring a time cost of reproduction, this model does not restrict the
time spent on reproduction to be the parent’s time exclusively. We shall see below that this interpreta-
tion is necessary for a particular simplifying assumption on the cost of reproduction for entrepreneurs.

9. Also note that, since there exists a unique consumption good in this economy, the traditional technol-
ogy might be sufficiently productive, compared to the modern technology, to imply Et = 0 at least
initially. Since the purpose here is to study the role of entrepreneurship, the rest of the analysis im-
plicitly restricts (i) the model’s fixed parameters, (ii) the exogenous (state) variables, and (iii) the initial
values of endogenous state variables such that Et > 0 for all t .
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Production: Let i ∈ [0, Et] be a representative firm. The Cobb-Douglas technology of

production is

Yi t =
�

Xi t hwi t

�λ
h1−λ

mi t
λ ∈ (0,1) (3.5)

where Yi t denotes output, Xi t > 0 denotes labor productivity associated with worker

hours hwi t , and hmi t denotes management hours allocated to production.

Recall that the labor endowment of (adult) individuals is homogeneous. Accordingly,

what differentiates worker and management hours in (3.5) is only the nature of the tasks

in the question: Two distinct tasks are required to produce the good. Workers are the ones

who actually produce the good in its finalized form with their eye-hand coordination, and

managers are the ones who tell workers what to do and how to do it.

The knowledge content of management is represented by Xi t which is a measure of

prescriptive knowledge; Xi t identifies the "quality" of the production process.

Productivity Change: What cause the labor productivity of the modern technology to

grow in time are new inventions created through costly inventive projects. The invention

projects, requiring research hours directed to invention, generate a stochastic number of

inventions, and each new invention increases a baseline level of productivity by some

fixed factor.

Suppose, as in Desmet and Parente (2009) and many others, that the modern sector

firms in period t have access to the average productivity X t ∈R++ attained by the firms

of the previous generation. The term access here refers to the intergenerational diffusion

of prescriptive knowledge embedded in X t . Simply define this average as

X t ≡ E−1
t−1

∫ Et−1

0

X j t−1d j (3.6)

where j indexes period-(t − 1) firms.
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Define now firm i ’s operating productivity as

Xi t ≡ σ
zi t X t (3.7)

where σ > 1 is the stepsize of inventions and zi t ∈N+ is the stochastic number of inven-

tions satisfying

zi t ∼ Pois
�

ai t

�

(3.8)

In (3.8), ai t ∈R+ denotes the arrival rate of inventions and satisfies

ai t = θξ
�

Kt

�

hr i t θ > 0 (3.9)

where hr i t denotes the amount of hours allocated to research by firm i . This invention

technology features constant returns to scale with respect to rival labor input hr i t .

The novelty here is the term θξ
�

Kt

�

, i.e. the level of research productivity per unit

of inventive effort, where Kt ∈ R++ denotes the number of costlessly accessible useful

discoveries to be utilized in the process of inventing. ξ
�

Kt

�

, assumed to be continuously

differentiable, is the intrinsic component of research productivity explained by epistemic

foundations; θ > 0 is the extrinsic productivity of invention.

Three restrictions on ξ
�

Kt

�

are central to the main results of this paper, and it is

more convenient for the sake of the discussion to formally state them first:

ξ ′ (K)> 0 for all K <∞ ξ (0) = 0 lim
K→∞

ξ (K) = 1 (3.10)

The first restriction here represents the conjecture that it is more likely to be success-

ful in invention if more useful discoveries are available. In light of the earlier discussion

about the role of propositional knowledge, this is a plausible way to restrict the epistemic
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function ξ
�

Kt

�

.10

The second restriction imposes that discoveries are essential inputs of invention

projects. In Mokyr’s (2002, pp. 13-14) words, "[t]he likelihood that a laptop computer

would be developed in a society with no knowledge of computer science, advanced elec-

tronics, materials science, and whatever else is involved is nil."

The third restriction originates from the conjecture that the productivity of research

per unit of inventive effort should have an upper limit when Kt → ∞ as in, e.g.,

Weitzman (1998): The arrival rate is a growth factor of productivity, and this has to

have an upper limit naturally imposed by (neuro)physiological capabilities of humans;

the arrival rate should be bounded above for any level of inventive effort that is less than

infinity. That Kt goes to infinity means, on the other hand, that every single knowable

thing about the natural phenomena underlying the production processes is known. This

is the ultimate enlightenment that eliminates what causes a unit of inventive effort to be

less productive than its full potential of θ, i.e. the narrowness of the epistemic bases for

invention. An inventor, knowing practically everything about the natural phenomena,

does not have to spend her time with trying to realize which certain discoveries are use-

ful. She simply generates an expected number of inventions with constant (maximum)

productivity θ as in many other endogenous technology models.

The Traditional Technology

Production: The Cobb-Douglas production function that determines the volume YT t

of output produced with the traditional technology is

YT t =
�

X̃T t HT t

�η
L1−η

T t
η ∈ (0,1) (3.11)

10. Clearly, the invention technology (3.9) does not incorporate the fishing out effect: Research produc-
tivity per unit of inventive effort does not decrease with X t . Chapter 7 discusses an alternative postu-
lation where research productivity increases with Kt and decreases with X t .
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where X̃T t is labor productivity, HT t is the total amount of hours allocated to production,

and LT t is land input.

Productivity Change: Since the main purpose is not to develop a theory of traditional

technology’s labor productivity growth, a very simple law of motion for X̃T t is adapted

following Desmet and Parente (2009):

X̃T t+1

X̃T t

=max







ζ0,





X t+1

X t





ζ1







ζ0 > 1,ζ1 > 0 (3.12)

In (3.12), ζ0 > 0 denotes an exogenous (gross) growth rate of X̃T t . The second ar-

gument of the maximum function imposes that X̃T t grows faster than ζ0 if the spillover

effect from the modern technology is high enough. (3.12) thus captures initially slow and

stable and then accelerating rates of productivity growth of the land-based technologies.

Collective Discovery

The last technology to be specified is of the stock Kt of useful discoveries. In its generic

form, what creates new discoveries is simply time. The conjecture, as introduced earlier,

is that entrepreneurs, owning the firms using the modern technology, collectively dis-

cover new pieces of propositional knowledge during their lifetime. They not only create

new knowledge in this serendipitous way individually but also share what they create

with each other in their common environment, e.g. in coffeehouses. This is a network

effect that is consistent with the common knowledge characterization of useful discover-

ies.

The simplest way to formalize this is a linear knowledge production function of the

form

Kt+1−Kt =ωℓt Et ω > 0 (3.13)

where ℓt Et denotes the total lifetime of all entrepreneurs that, interpreted as a single
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variable, is the input of the collective discovery process and ω > 0 represents the quality

of environment for creating and sharing useful discoveries. This constant thus represents

geographical, cultural and social determinants of collective discovery process.11

3.2 Occupations

Recall that the set of entrepreneurs is [0, Et] in equilibrium, and i indexes entrepreneurs.

The remaining mass Nt − Et of adult individuals forms the set of workers.

Equilibria of this model build upon two decision problems solved respectively by

entrepreneurs and workers. The purpose of this and the following sections is to derive

these decision problems.

The problems involve fertility choice for both occupations and an additional decision

regarding the inventive activity for entrepreneurs. These decisions are finalized in the

sense that they embed other decisions these individuals have to take optimally. That is,

if the occupation is chosen optimally and the decision problems are solved, both at the

beginning of adulthood, other actions follow contingently.

To proceed with maximum clarity, it is necessary at this stage to briefly discuss what

entrepreneurs and workers do.

3.2.1 Entrepreneurs

An entrepreneur, as noted earlier, establishes a firm that uses the modern technology.

There are no establishment costs involved. Once an entrepreneur establishes the firm,

she becomes the business owner until the end of her life. The firm dies with its en-

trepreneur, and each generation raises new entrepreneurs who establish and own new

firms using the modern technology.

As the business owner, an entrepreneur purchases an optimal level of worker hours.

The other necessary input, i.e. management, is provided by the entrepreneur herself.

11. Note that the linearity with respect to ℓt Et is not a crucial assumption of the model. The qualitative
nature of results does not change as long as Kt+1−Kt is an increasing function of ℓt Et .
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This creates an incentive for the entrepreneur to spend resources for inventive activities.

An entrepreneur, as any adult individual, also chooses her fertility. The key simpli-

fying assumption here is that entrepreneurs hire workers to take care of their children.12

From a technical point of view, this simplifying assumption is necessary to separate the

choice of fertility from the decision regarding the inventive activity for an entrepreneur.

3.2.2 Workers

Those who choose to become workers supply hours for three activities:

First, some workers are employed by entrepreneurs to work in their firms using the

modern technology.

Second, some workers, again being employed by entrepreneurs, take care of en-

trepreneurs’ children at home.

Finally, some workers choose to work in the firms that use the traditional technology.

3.3 Markets

All sellers and all buyers in any market of this economy are price-takers. This is a model

of perfect competition.

Two things are traded in markets. First, the consumption good is demanded by all

adult individuals in the economy and produced/sold by firms that use either the tradi-

tional or the modern technology. The consumption good is the numéraire of the econ-

omy. Second, a worker hour is traded at wage Wt > 0.

12. One justification for this assumption, despite its sexist tone, is this: In the British inventors data set of
Meisenzahl and Mokyr (forthcoming), we observe only one woman out of 759 individuals. If it is not
entirely misleading to imagine that mothers take care of their children and a business is run by one
person only, then the cost of fertility for a family where the husband chooses to be an entrepreneur
must be foregone worker earnings.
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3.4 Production Sectors

3.4.1 Modern Sector

Entrepreneurial invention occurs, if it is optimal, in the modern sector and generates

positive economic growth through productivity increases. Then, the question is what

creates an incentive to invent for each entrepreneur under perfect competition. That

each entrepreneur manages her firm by providing the manager hours herself answers

this question: Management is basically the quasi-fixed factor of production that implies

positive profit for the entrepreneur. Assuming that the invention technology is costlessly

accessible, it shall be the case that the entrepreneur may find it optimal to allocate some

of her scarce time endowment to inventive activity.

Optimal Ex Post Profit

The first task in characterizing what happens in the modern sector is to derive the optimal

ex post profit maximized through the optimal choice of the demand for worker hours.

Ignoring the complications regarding the timing of events within a period and follow-

ing, e.g., Aghion and Howitt (2009), assume that an entrepreneur can choose the level of

optimal demand for worker hours hwi t for given (Xi t , hmi t ,Wt ) to maximize profit. The

profit function is defined as

Π
�

hwi t ,Xi t , hmi t ,Wt

�

≡
�

Xi t hwi t

�λ
h1−λ

mi t
−Wt hwi t (3.14)

The optimal hwi t and Π
�

hwi t ,Xi t , hmi t ,Wt

�

thus satisfy

hwi t ≡ argmax
h
Π
�

h,Xi t , hmi t ,Wt

�

=
λ

1
1−λX

λ
1−λ

i t
hmi t

W
1

1−λ
t

(3.15)

Πi t = (1−λ)λ
λ

1−λ

�

Xi t

Wt

� λ
1−λ

hmi t (3.16)
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Entrepreneurial Invention

Replace Xi t with σ zi t X t . The invention technology, via (3.8) and (3.9), then implies the

expected profit as in

EΠi t ≡
∞
∑

z=0





az
i t

exp
�

−ai t

�

z !













(1−λ)λ
λ

1−λ





σ zX t

Wt





λ
1−λ

hmi t









(3.17)

The term in the first brackets denotes the Poisson probability of generating z inven-

tions given ai t . The term in the second brackets is the level of optimal ex post profit when

entrepreneur generates z inventions given ai t .

What does not allow entrepreneur i to be able to spend an infinite amount of re-

sources to inventive activity is her time constraint: hmi t+ hr i t ≤ ℓt . Since EΠi t is strictly

increasing in hmi t , this constraint holds with strict equality in equilibrium:

hmi t + hr i t = ℓt (3.18)

Together with (3.9), (3.18) allows us to rewrite the expected profit as

EΠi t =
∞
∑

z=0





az
i t

exp
�

−ai t

�

z !













(1−λ)λ
λ

1−λ





σ zX t

Wt





λ
1−λ
 

ℓt −
ai t

θξ
�

Kt

�

!









(3.17′)

Lemma 1: The expected profit in (3.17′) can be rewritten as

EΠi t = exp
�

Σai t

�

Λ





X t

Wt





Γ 

ℓt −
ai t

θξ
�

Kt

�

!

(3.17′′)

where

Γ≡
λ

1−λ
Λ≡ (1−λ)λ

λ
1−λ Σ≡ σ

λ
1−λ − 1
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are defined for notational ease.

Proof — See Appendix A. �

(3.17′′) now identifies the cost of and the return to inventive activity. The first term,

exp
�

Σai t

�

, increases the expected profit by some factor greater than one depending on

the size σ of invention and the productivity elasticity λ of output. The last term in the

last parentheses, ai t/θξ
�

Kt

�

, is the time cost of inventing with an expected number ai t

of inventions. Clearly, (3.17′′) specifies the deterministic level of profit when no inventive

activity is undertaken (ai t = 0). Xi t is equal to X t in this case.

Production

The production at the firm level is implied by (3.5) given (hwi t ,Xi t , hmi t ) where hwi t

satisfies (3.15). The final task to complete the discussion of the modern sector is thus to

define the total ex post production:

Yt =

Et
∫

0

Yi t di (3.19)

3.4.2 Traditional Sector

There exists a single firm in this sector, and there do not exist property rights over the

land.13 With total land endowment of the economy normalized to unity, these assump-

tions allow us to work with the following restricted form of the traditional technology

YT t =XT t H η

T t
(3.12′)

where XT t ≡ X̃ η

T t
.

Those who supply worker hours to this sector’s firm are assumed to be the owners

13. The alternative assumption of a unit mass continuum of identical firms does not alter the results under
perfect competition given the constant-returns-to-scale technology (3.12).
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of the firm with equal ownership shares. Hence, these workers equally appropriate a

positive profit in addition to their income originating from labor supply. It turns out

that workers in the traditional sector earn, per unit hour, the average product XT t H η−1
T t

.

In any equilibrium, then, we must have

XT t H η−1
T t
=Wt (3.20)

due to the perfect mobility of labor across sectors.

From (3.20) follows the mass NT t of workers employed in the traditional sector:

NT t ≡
HT t

ℓt

(3.21)

Note that a richer treatment with land rents would pose no serious difficulties given

the constant-returns-to-scale technology (3.12) and under, e.g., the law of primogeniture

that simplifies the intergenerational transmission of land ownership. In that case, those

who own, e.g., equal shares of land would appropriate the land rents in every generation,

leaving the land ownership to one of their surviving children.

3.5 Decision Problems

This subsection finally derives the decision problems solved by entrepreneurs and work-

ers. Three remarks follow before proceeding to the derivations:

First, notice that workers are indifferent between taking care of their children on

their own and hiring workers as entrepreneurs do so. In what follows, it is assumed that

workers take care of children with their own time.

Second, given preferences and the entire discussion above, the new elements needed

are the budget constraints individuals face.

Finally, note that only two problems are of interest, one for workers and one for

entrepreneurs. For workers, there is a unique problem because all earn Wt per unit hour.
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For entrepreneurs, the uniqueness of the problem follows from the fact that they all face

the same baseline productivity X t . That there exists only one problem solved by all

entrepreneurs in turn implies that entrepreneurs of generation t act symmetrically with

respect to certain choice variables. Then, once the uncertainty regarding the inventive

activity is resolved, a cross-section probability distribution characterizes the remaining

entrepreneur-level variables.

3.5.1 Workers’ Problem

Rewrite the utility function (3.2) for our representative worker who gives birth to bw t

children and consumes Cw t units:

Uw t ≡Cw t +φ ln
�

st bw t

�

Since this worker earns the unit wage of Wt and spends ρbw t amount of worker hours

and ψbw t amount of goods for child care, her budget constraint reads

Cw t +ψbw t ≤ (ℓt −ρbw t )Wt

That Uw t is strictly increasing in Cw t leads this budget constraint to hold with strict

equality. Eliminating bw t via nw t = st bw t then implies

Cw t =

�

ℓt −ρ
�

nw t

st

��

Wt −ψ
�

nw t

st

�

(3.22)

Note that Cw t ≥ γ , following from (3.3), and (3.22) now determine the upper level of

nw t as in

nw t ∈
�

1,
(Wtℓt − γ )st

ρWt +ψ

�

(3.23)

and workers, choosing nw t , seek to maximize
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Uw t =

�

ℓt −ρ
�

nw t

st

��

Wt −ψ
�

nw t

st

�

+φ ln
�

nw t

�

(3.24)

subject to (3.23).

3.5.2 Entrepreneurs’ Problem

The utility function (3.2) can be rewritten for entrepreneur i as

Ui t ≡Ci t +φ ln
�

st bi t

�

where Ci t and bi t respectively denote her consumption level and the number of children

she gives birth to. The budget constraint she faces reads

Ci t +ψbi t +ρbi tWt =Πi t (3.25)

where ψbi t +ρbi tWt indicates the total cost of having bi t children.

As in the derivation of the workers’ problem, Ui t is strictly increasing in Ci t , imply-

ing that the budget constraint above holds with strict equality. This allows us to rewrite

Ui t as

Ui t =Πi t −ψbi t −ρbi tWt +φ ln
�

st bi t

�

The only worth-to-be-emphasized difference with the workers’ problem here is that

entrepreneur i ’s decision towards inventive activity is taken under uncertainty, i.e. to

maximize EUi t = EΠi t−ψbi t−ρbi tWt+φ ln
�

st bi t

�

. Thus, the appropriate form of the

minimum consumption constraint for entrepreneurs’ problem is

ECi t ≥ γ

This inequality, the budget constraint above and EΠi t as in (3.17′′) imply that net

fertility ni t = st bi t is bounded above as in
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ni t ∈













1,

�

exp
�

Σai t

�

Λ
�

X t

Wt

�Γ
�

ℓt −
ai t

θξ (Kt )

�

− γ
�

st

ρWt +ψ













(3.26)

Therefore, entrepreneurs, choosing ni t and ai t , seek to maximize

EUi t = exp
�

Σai t

�

Λ





X t

Wt





Γ 

ℓt −
ai t

θξ
�

Kt

�

!

−ψ
�

ni t

st

�

−ρ
�

ni t

st

�

Wt +φ ln
�

ni t

�

(3.27)

subject to (3.26) and

ai t ∈
�

0,amax
t

�

(3.28)

where amax
t
≡ θξ

�

Kt

�

ℓt > 0 is the maximum possible arrival rate when entrepreneur

spends her entire labor endowment to inventive activity.

3.5.3 Occupational Choice

By solving the decision problems derived above, workers and entrepreneurs act opti-

mally. What completes the occupational choice with individual rationality is therefore

the following equal utilities restriction:

EUi t =Uw t (3.29)

An adult individual, taking all actions at the beginning of her adulthood, must be indif-

ferent between becoming an entrepreneur and becoming a worker.14

14. Note that, within this simple two-occupation framework with ex ante identical adult individuals, the
equilibrium mass of entrepreneurs is determined in the labor market residually; see below.
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3.6 Market Clearing Conditions

The final task is to close the model through the market clearing conditions:

The market for worker hours clears via

�

Nt − Et −NT t

�

ℓt −
�

Nt − Et

�

ρbw t =

Et
∫

0

hwi tdi + Etρbi t (3.30)

where the R.H.S. and the L.H.S. of (3.30) respectively denote the total demand for and

the total supply of worker hours. The first term in the R.H.S. is the total amount of

hours employed in the modern sector firms, and the second term in the R.H.S. denotes

the amount of hours allocated to entrepreneurs’ child care. The supply of worker hours

is determined by the total available hours
�

Nt − Et −NT t

�

ℓt minus hours not supplied

to the market by workers due to child care.

The market for the consumption good clears via

YT t +Yt =

Et
∫

0

�

Ci t +ψbi t

�

di +
�

Nt − Et

��

Cw t +ψbw t

�

where the R.H.S. denotes the total supply from traditional and modern sectors and the

L.H.S. denotes the total demand by entrepreneurs and workers.
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Chapter 4

Static, Dynamic, and Asymptotic Equilibria

This chapter defines and analyzes the equilibria of the model economy. The main pur-

pose in this chapter is to establish the analytical foundations of the model economy’s

equilibrium path from some initial period to the infinite future. Naturally, for things to

be interesting from a unified growth perspective, this equilibrium path should be long

enough to cover the transition from stagnation to growth in its entirety.

The static general equilibrium of the model is defined first. The important prop-

erties of this unique static general equilibrium are studied next. The dynamic general

equilibrium of the model is then defined as a sequence of static general equilibria. The

unique dynamic general equilibrium is further restricted to characterize the asymptotic

equilibrium of the model for t →∞. A discussion on the asymptotic equilibrium and

its stability properties leads the chapter to a concluding section on the model economy’s

equilibrium path.

4.1 Static General Equilibrium

Definition 1: A static general equilibrium of this model, for any t ∈ N+, is a collec-

tion {nw t ,Cw t , HT t ,NT t ,YT t , Et ,{ni t ,ai t , hr i t , hmi t , zi t ,Xi t , hwi t ,Yi t ,Πi t ,Ci t}i∈[0,Et ]
,Yt}

of quantities and the wage Wt such that, given the state vector (st ,ℓt ,Nt ,Kt ,X t ,XT t ),

• nw t solves the workers’ problem characterized by (3.23) and (3.24),

•
�

ni t ,ai t

�

solves the entrepreneurs’ problem characterized by (3.26)-(3.28),



• all adult individuals are indifferent between becoming an entrepreneur and becom-

ing a worker through (3.29),

• the market for worker hours clears through (3.30),15 and

• (3.5), (3.7), (3.8), (3.9), (3.15), (3.16), (3.18), (3.19), (3.12′), (3.20), (3.21), (3.22) and

(3.25) are satisfied. �

Proposition 1: There exists a unique static general equilibrium (SGE).

Proof — See Appendix A. �

4.1.1 Ex Ante Symmetry and Ex Post Heterogeneity

Since all entrepreneurs face the unique vector (Wt ,X t ,Kt , st ,ℓt ) of given variables in util-

ity maximization, they act symmetrically regarding the inventive activity:16

ai t = at and hr i t = hr t for all i ∈ [0, Et]

Notice that ex ante symmetry across entrepreneurs translates into ex post heterogene-

ity because of the stochastic nature of invention. Despite spending an equal amount of

research hours to inventive activity, entrepreneurs do not generate an equal number of

inventions. A fraction of them record no inventions, a fraction only one, and another

fraction two, and so on. Clearly, these fractions in cross-section establish a Poisson dis-

tribution under the assumption that Et is a large number. Specifically, for any arrival rate

a > 0, the ex ante probability of generating z inventions is equal to the ex post fraction

of entrepreneurs with z inventions.

15. Note that the market for the consumption good clears via Walras’ Law. Hence, the market clearing
condition for this market is not included in equilibrium defining equations.

16. That inventive effort is common across entrepreneurs in turn implies that they all spend an equal
amount hmt on management.
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The Poisson fractions naturally determine the variation of the operating productiv-

ity Xi t , of the demand for worker hours hwi t , of the volume of production Yi t , of the

level of profit Πi t and of the level of consumption Ci t across entrepreneurs. All these

distributions are identical to the unique (stationary) Poisson distribution Pois(at ).

4.1.2 The Invention Threshold and the Industrial Revolution

The unique SGE of the model is characterized either by at = 0 or by at ∈ (0,amax
t
), and the

industrial revolution in the model is defined as the endogenously occurring switch from

the equilibrium regime of at = 0 to that of at > 0.

The threshold property of inventive activity directly follows from the solution to the

entrepreneurs’ problem through a rather straightforward algebra involving an applica-

tion of Kuhn-Tucker Theorem. Intuitively, the marginal cost of increasing the expected

number of inventions from zero to an infinitesimally small amount is a strictly positive

number that may well exceed its marginal return. This is due to the fact that entrepreneur

has to decrease her management input to increase her inventive effort. That is, the return

to and the cost of invention is not additively separable; see (3.17′′). Formally, we have the

following:

Proposition 2: The unique SGE of the model is characterized by an invention thresh-

old such that

at =







0 if ξ
�

Kt

�

ℓt <
h

θ
�

σ
λ

1−λ − 1
�i−1

θξ
�

Kt

�

ℓt −
�

σ
λ

1−λ − 1
�−1

otherwise
(4.1)

Proof — See Appendix A. �

Notice that ℓt , σ and λ increase the return to inventive activity and that θξ
�

Kt

�

de-

creases the cost of it. Thus, these four determinants of inventive activity create threshold

effects accordingly.
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Kt

at

θξ (Kt )ℓt

0

θℓt −
�

σ
λ

1−λ − 1
�−1

K tr
t

0

Figure 4.1: The Arrival Rate as a Function of the Stock of Discoveries

For the rest of the analysis, it is useful to approach this threshold property by taking

Kt as the endogenous state variable that determines whether at = 0 or at > 0. Suppose

that the inverse function ξ −1(•) exists, and define the time-variant threshold originating

from Proposition 2 as

K tr
t
≡ ξ −1

�

θ−1
�

σ
λ

1−λ − 1
�−1

ℓ−1
t

�

(4.2)

Since ξ −1(•) is strictly increasing, as implied by strictly increasing ξ (K) for all K <∞,

K tr
t

is strictly decreasing in θ, σ , λ and ℓt as expected. Figure 4.1 draws at as a function

of Kt where K tr
t

is as defined above.

From Proposition 2 follows the optimal allocation of entrepreneurs’ time to man-

agement. When invention is not optimal, entrepreneurs clearly spend their entire labor

endowment ℓt to routine management to fully benefit from the profit opportunities un-

der constant productivity. Formally, we have

hmt =







ℓt if Kt <K tr
t

h

θξ
�

Kt

�

�

σ
λ

1−λ − 1
�i−1

otherwise
(4.3)
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4.1.3 Productivity, Wage, and Output

The level of the real wage Wt at the unique SGE, along with other things, determines the

level of economic development in this economy. It specifically determines the size of the

traditional sector and the optimal level of fertility. Thus, it is necessary to understand

how the real wage itself is tied to productivity.

The mapping from productivity to wage in the modern sector of the economy is

Wt = (1−λ)
1−λλλδ

�

at ,Kt ,ℓt

�

X
λ

t
(4.4)

where δ
�

at ,Kt ,ℓt

�

is an auxiliary function defined as in

δ
�

at ,Kt ,ℓt

�

≡ exp
h

(1−λ)
�

σ
λ

1−λ − 1
�

at

i

 

1−
at

θξ
�

Kt

�

ℓt

!1−λ

When inventive activity is not optimal (at = 0), we have δ(0,•,•) = 1 implying that

Wt = (1− λ)
1−λλλX

λ

t
. This simply corresponds to the unit price of a worker hour that

would prevail in a competitive model of occupational choice with Cobb-Douglas tech-

nology and without entrepreneurial invention.

When inventive activity is optimal (at > 0), management input is tied to invention

technology through the optimal use of entrepreneurs’ time. Wt in competitive equilib-

rium thus embeds this effect via δ(•,•,•) function. Notice, however, that the only source

of sustained growth in Wt is still the sustained growth of X t ; at andδ
�

at ,Kt ,ℓt

�

are both

bounded above for any t .

Returning to the volume of output produced in the modern sector, the unique SGE

is characterized by

Yt ≡

Et
∫

0

Yi t di = Et

�

λ

1−λ

�λ

X
λ

t
ℓtδ

�

at ,Kt ,ℓt

�

(4.5)

The total volume of output is proportional to the number of firms/entrepreneurs
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simply because ex post heterogeneity obeys the well-behaved Poisson distribution.

4.1.4 The Structural Transformation

To see how the structural transformation is determined in this model, consider the labor

and the output shares of the modern sector defined as in

f N M
t
≡ 1−

NT t

Nt

and f Y M
t
≡

Yt

YT t +Yt

In the unique SGE, the labor share NT t/Nt of the traditional sector, measured in

individuals (not in worker hours), satisfies

NT t

Nt

=

�

1

ℓt Nt

��

XT t

Wt

� 1
1−η

(4.6)

and the total volume of output produced in the traditional sector reads

YT t =
X

1
1−η

T t
�

Wt

�
η

1−η

(4.7)

Recalling that the traditional and the modern sectors produce the same good, a higher

level of traditional sector productivity XT t implies a higher labor share NT t/Nt of this

sector in contrast to the dual economy models in which (i) the land-based technology (or

agriculture) is used to produce food and (ii) there exists a minimum food consumption

restriction.

Population growth and longevity gains, on the other hand, decrease NT t/Nt via the

push effect of the larger supply of hours ℓt Nt which is due to the dependency on fixed

land input.

The pull effect of the modern sector’s productivity is represented by Wt . Figure 4.2

pictures the labor share of the traditional sector as a function of the real wage.
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Figure 4.2: The Labor Share of the Traditional Sector as a Function of Real Wage

4.1.5 Fertility and the Demographic Transition

The unique SGE of the model captures the phases of a demographic transition mainly

depending on the evolution of real wage Wt .

Proposition 3: The unique SGE is characterized by identical fertility choice among all

adults, satisfying nw t = ni t = nt , such that

nt =



















(Wt ℓt−γ )st

ρWt+ψ
if Wt <

φ+γ
ℓt

φst

ρWt+ψ
if Wt ∈

h

φ+γ

ℓt
, φst−ψ

ρ

i

1 if Wt >
φst−ψ
ρ

(4.8)

where the total births per adult, denoted by bt , is given by nt/st .

Proof — See Appendix A. �

(4.8) identifies the thresholds for fertility determined simply by the cost of and the

return to reproduction. For sufficiently low levels of potential lifetime income Wtℓt ,

adult individuals’ priority remains as their own consumption. When this consumption

constraint binds, increasing Wt and ℓt allow them to increase their optimal net fertility

basically because they have more resources to spend on reproduction. Not surprisingly,
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0
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ℓt st−ρ

φℓt st

ρ(φ+γ )+ψℓt

Figure 4.3: Net Fertility as a Function of Real Wage

the parental desire for reproduction does not affect fertility during this first phase of the

demographic transition.

If the potential lifetime income continues to increase, it eventually becomes optimal

to decrease fertility since adults are now free to choose an optimal consumption higher

than the "subsistence" level of γ . The income effect vanishes completely at this second

stage of the demographic transition, and both net and gross fertility decline with increas-

ing Wt . This phase of the demographic transition is thus characterized by the vanishing

role of adult longevity. The substitution effect, on the other hand, still implies a negative

effect of Wt on fertility. Maintaining a level of net fertility that is greater than unity

becomes sufficiently costly for adults at the advanced stages of economic development,

i.e. Wt > (φst −ψ)ρ. Thus, the third stage of the demographic transition records net

fertility equal to unity so that the level of adult population stabilizes. Net fertility as a

function of the real wage is shown in Figure 4.3.

4.1.6 The Supply of Entrepreneurship

The supply of entrepreneurship is central to the equilibrium path of the model economy

since the growth rate of Kt is a function of the mass Et of entrepreneurs. This mass
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satisfies

Et = (1−λ)
�

1−
NT t

Nt

−
ρbt

ℓt

�

Nt (4.9)

Note that the mass of entrepreneurs satisfies (4.9) regardless of the invention threshold

and the thresholds of net fertility. There exist simply three determinants of the supply of

entrepreneurship: First, out of Nt adult individuals, NT t individuals work in the prim-

itive sector. Second, a fraction of the total labor endowment is allocated to fertility per

adult. Finally, (1− λ) is the ratio of entrepreneurs among the mass of individuals who

choose to work in the modern sector.

4.1.7 Output per worker and Output per capita

Two measures of the standard of living are output per worker and output per capita,

and it is useful to define them before proceeding to the analysis of the dynamic general

equilibrium.

Since every adult has bt children, the total population is equal to Pt ≡ (1+ bt )Nt .

Thus, output per worker y pw
t and output per capita y pc

t read

y pw
t
=

YT t +Yt

Nt

y pc
t
=

YT t +Yt

(1+ bt )Nt

(4.10)

where YT t and Yt respectively satisfy (4.7) and (4.5).

4.2 Dynamic General Equilibrium

To define the dynamic general equilibrium, it is necessary to specify how the vector

(st ,ℓt ,Nt ,Kt ,X t ,XT t ) of state variables evolves from t to t + 1. For the exogenous state

variables, recall that the sequences {st ,ℓt}t∈N+ are exogenously given. Next, adult popu-

lation Nt and the stock of discoveries Kt evolve respectively with (3.1) and (3.13). Thus,

the laws of motion to recover are those of X t and XT t .
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To derive the former, iterate (3.6) to obtain

X t+1 = E−1
t

∫ Et

0

Xi tdi

Substituting Xi t with σ zi t X t and noting once again that the ex post fraction of en-

trepreneurs with z inventions is equal to the ex ante probability of generating z inven-

tions result in

X t+1 =X t

∞
∑

z=0

 

az
t

exp
�

−at

�

z !

!

σ z

This law of motion in turn reduces into the following after some arrangements as in

the proof of Lemma 1:

X t+1 =X t exp
�

(σ − 1)at

�

(4.11)

Thus, as in Aghion and Howitt (1992) and others, the growth rate of (average) pro-

ductivity is explained by the size σ and the intensity at of inventions.

Using (3.12) and the law of motion derived above, the growth rate of XT t = X̃ η

T t
can

be written as
XT t+1

XT t

=max
�

ζ η0 , exp
�

ηζ1 (σ − 1)at

�	

(4.12)

Definition 2: A dynamic general equilibrium of this model economy is a sequence

of static general equilibria, existing for all t ∈ N+, together with the sequences

{Nt ,Kt ,X t ,XT t}t∈N++ , that satisfies the laws of motion (3.1), (3.13), (4.11) and (4.12) given

the sequences {st ,ℓt}t∈N+ and the initial values (N0,K0,X 0,XT 0). �

Proposition 4: There exists a unique dynamic general equilibrium (DGE).

Proof — See Appendix A. �
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4.3 The Asymptotic Equilibrium

The asymptotic equilibrium of the model economy is the (unique) limiting SGE for

t → ∞. This limit, as argued earlier, corresponds to some distant future in historical

time. Motivated by growth empirics and by the "spirit" of the model, the asymptotic

equilibrium to be constructed and analyzed is the one with

• the positive growth of modern sector productivity and output,

• the constant level of population, and

• the declining traditional sector

Notice that, in this asymptotic equilibrium, output per worker and output per capita

exhibits exponential growth. One should however be careful about the nature of this

result: By definition, the model economy does not reach its asymptotic equilibrium in

finite time. The asymptotic equilibrium is conceptually and technically different from

a steady-state equilibrium if the latter is defined as a static equilibrium that is reached

in finite time and in which the bounded variables of the model remain constant from

some finite t to the infinite future. This sort of steadiness is satisfied by some variables of

the model in the unique DGE. Net fertility nt , for example, reaches its baseline level of

unity in finite time if the real wage grows to hit an endogenous threshold. Some other key

variables, however, do not reach their asymptotic values. The arrival rate at , for example,

converges to

a⋆ ≡ lim
t→∞

at = θ lim
t→∞

ξ (Kt ) lim
t→∞

ℓt −
�

σ
λ

1−λ − 1
�−1

which reduces into a⋆ = θ−
�

σ
λ

1−λ − 1
�

with ξ (Kt )→ 1 and ℓt → 1. The former limit

condition, as specified earlier, requires Kt →∞.

4.3.1 Two Preliminary Tasks

To construct the asymptotic equilibrium, two preliminary tasks have to be completed:

First, we need to preclude the uninteresting DGE where an industrial revolution is not
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even possible. Next, we need to specify the condition(s) under which the traditional sector

does not operate when t →∞.

The Possibility of an Industrial Revolution

The earlier restrictions that we put on ξ (K) function in (3.10) do not ensure K t r
t
<∞;

see (4.2). In what follows, it is assumed that the inverse function ξ −1(•) and its argument

θ−1
�

σ
λ

1−λ − 1
�−1

ℓ−1
t

, for all t , are such that K t r
t
<∞.

This assumption is less restrictive than it may sound because the simplest forms of

ξ (K) function that satisfy (3.10) also imply that K t r
t
<∞ for sufficiently high θ, σ or λ

given any ℓt .

The Decline of the Traditional Sector

For the DGE with an industrial revolution, what would ensure the decline of the tradi-

tional sector is the slower growth of XT t than that of Wt for t →∞:

f N M⋆ ≡ lim
t→∞

f N M
t
= 1−

� 1

ℓ⋆N ⋆

�

lim
t→∞







�

XT t

Wt

� 1
1−η







If the spillover from the modern to the traditional sector, i.e. from X t to XT t , never

becomes active in the unique DGE, then ζ η0 < exp[λ(σ − 1)a⋆] would be necessary as

dictated by Wt ∝ X
λ

t
, (4.11) and (4.12). On the other hand, if the spillovers become

active at some t <∞, what ensures the slower growth of XT t compared to that of Wt for

t →∞ is

ζ1 <
λ

η
(4.13)

In what follows, it is assumed that (4.13) is satisfied. The former condition of ζ η0 <

exp[λ(σ − 1)a⋆], on the other hand, shall be of no importance since the value of ζ0 that

explains the long epochs of stagnation before the industrial revolution is always suffi-

ciently low to activate the sectoral spillover from X t to XT t ; see below.
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Table 4.1: Equilibrium Regimes

Regime Invention Fertility Spillover from X t to XT t

I at = 0 nt incr. w/Wt inactive
II at = 0 nt decr. w/Wt inactive
III at = 0 nt = 1 inactive
IV at > 0 nt incr. w/Wt inactive
V at > 0 nt decr. w/Wt inactive
VI at > 0 nt = 1 inactive
VII at = 0 nt incr. w/Wt active
VIII at = 0 nt decr. w/Wt active
IX at = 0 nt = 1 active
X at > 0 nt incr. w/Wt active
XI at > 0 nt decr. w/Wt active
XII at > 0 nt = 1 active

4.3.2 The Global Stability

Given the exogenous sequences {st ,ℓt}t∈N+ , the model economy’s unique asymptotic

equilibrium characterized above is globally stable for the set of initial values and for the

set of model parameters that satisfy Et > 0 for all t ∈N+.

The difficulty here is that the dynamical system of the model is not simple enough to

allow us to rewrite it as an autonomous system of normalized variables. Instead, the anal-

ysis can only be carried out through a conditional dynamical system and with the help

of a phase diagram. What follows is a discussion of why the model’s asymptotic equi-

librium is globally stable, and the formal analysis of the conditional dynamical system is

presented in Appendix B due to its tediousness.

Recall that there exist two regimes of invention, three regimes of fertility, and two

regimes of the growth of the traditional sector productivity XT t . Hence there exist twelve

possible equilibrium regimes from which the model economy can start its evolution at

t = 0; see Table 4.1. The task is to understand why the economy eventually enters

Regime XII and stays in this regime for t →∞.

The first key to understand why the economy remains in a regime of at > 0 for large

enough t is the inevitability of an industrial revolution:
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Proposition 5: Let the unique DGE feature a0 = 0. Then, there exists a period 0 <

t t r <∞ such that at t r−1 = 0 and at t r > 0. That is, if the economy starts its evolution in

a period at which invention is not optimal, an industrial revolution inevitably starts at

some future period.

Proof — See Appendix A. �

Notice that the inevitability result of Proposition 5 implies that the arrival rate at of

invention remains positive for t > t t r . That ℓt is a non-decreasing sequence by assump-

tion and that K t r
t

is decreasing in ℓt imply Kt remains greater than K t r
t

for t > t t r . This

in turn implies that the arrival rate at of inventions increases to a⋆ after the industrial

revolution. Directly following is thus the positive asymptotic growth of X t and, thus,

of Wt . Clearly, then, the asymptotic equilibrium does not exist in Regimes I, II, III, VII,

VIII, and IX.

The perpetual growth of Wt is the main driver of the demographic transition. Re-

gardless of the stage of the demographic transition at t = 0, net fertility nt eventually

becomes equal to its baseline level of unity at some t < ∞, i.e. n⋆ = 1. This in turn

implies that the level of adult population stabilizes at N ⋆ > 0. Hence, the asymptotic

equilibrium does not exist in Regimes IV, V, X, and XI as well.

Finally, the asymptotic growth of X t and Wt eliminates Regime VI for t →∞. As

stated earlier and explained below, ζ0 is sufficiently low such that, at some t < ∞, the

growth rate X t+1/X t becomes sufficiently high to activate the sectoral spillovers; the

growth rate XT t+1/XT t exceeds ζ η0 .

4.3.3 The Asymptotic Rates of (Economic) Growth

Define the gross growth rate of the stock Kt of useful discoveries using (3.13) and (4.9) as

gK t ≡
Kt+1

Kt

= 1+
ωℓt

h

(1−λ)
�

1− NT t

Nt
− ρbt

ℓt

�

Nt

i

Kt

(4.14)

With n⋆ = s ⋆ = 1, gross fertility per adult attains the limit value b ⋆ = 1 in finite time.
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Figure 4.4: The Process of Collective Discovery for t <∞ and for t →∞

Since NT t converges to zero, gK t satisfies

g ⋆
K
≡ lim

t→∞
gK t = 1+

ω(1−λ)(1−ρ)N ⋆

limt→∞Kt

where (E⋆ ≡)(1− λ)(1− ρ)N ⋆ is the asymptotic value of the mass Et of entrepreneurs.

Clearly, E⋆ > 0 implies both gK t > 1 for t <∞ and g ⋆
K
= 1 for t →∞. These dynamics

are pictured in Figure 4.4.

Let gX t ≡ X t+1/X t denote the gross growth rate of the modern sector productivity.

Using the results derived earlier, we can write this growth rate as

gX t = exp
�

(σ − 1)
�

θξ (Kt )ℓt −
�

σ
λ

1−λ − 1
�−1��

In the limit, then, the asymptotic growth rate g ⋆
X

is a function of technological parameters

θ, σ , and λ, all having definite interpretations.

Returning to output per worker (y pw
t ) and output per capita (y pc

t ), first note that the
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asymptotic growth of these variables is explained entirely by the growth of X t : For t →

∞, the traditional sector declines, and adult population and fertility are fixed. Recalling

that the modern sector output is proportional to X
λ

t
, we can conclude that the asymptotic

growth rate g ⋆
y

of living standards is equal to

g ⋆
y
= exp

�

λ(σ − 1)
�

θ−
�

σ
λ

1−λ − 1
�−1��

=
�

g ⋆
X

�λ

In the asymptotic equilibrium, then, output per capita and output per worker grow at

a rate proportional to but lower than that of labor productivity where the stock of useful

discoveries and the level of population do not exhibit growth. Formally, we have

g ⋆
X
> g ⋆

y
> 1 g ⋆

K
= g ⋆

N
= 1

4.4 The Absence of the Weak and the Strong Scale Effects

An important feature of the model economy is to be noted before proceeding to the

construction of the equilibrium path: Not surprisingly, the weak and the strong scale

effects of population size are absent in this economy. In fact, the absence of scale effects

on output per worker and output per capita holds not only at the asymptotic equilibrium

but also along the transition.

To see why there does not exist a weak scale effect, recall that (i) the volume YT t of

the traditional sector output is not related with adult population Nt , and (ii) the volume

Yt of the modern sector output is proportional to Et (which itself is proportional to Nt ).

That is, if the level of population is higher, there exists a larger mass of entrepreneurs,

ceteris paribus, and, in the absence of any direct positive externality of Et or Nt on total

output, the SGE levels of y pc
t and y pw

t are not affected positively by Nt .

The strong scale effect, on the other hand, is absent because of the following:

Even though the model does not explicitly incorporate the horizontal dimension of

technological progress (or product innovation) as in the second-generation Schumpete-
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rian models of Young (1998), Peretto (1998a), Aghion and Howitt (1998, Ch. 12) and

Dinopoulos and Thompson (1998), that the innovative sector of the economy is inhab-

ited by a mass Et of independently innovating firms still implies that the total research

effort of the economy is spread thinly across modern sector firms. Given that there does

not exist a direct link from population level to productivity growth, the transition and

the asymptotic growth rates of y pc
t and y pw

t do not change with the level of population.17

4.5 The Equilibrium Path: From Stagnation to Growth

We can now construct an equilibrium path of the model economy from some distant past

t = 0 to some distant future t →∞. Specifically, the interest here is on an equilibrium

path with an initial SGE that exists in Regime I. This is clearly the most interesting equi-

librium path from a unified growth perspective. The stock of useful discoveries is small

enough to make invention not optimal, productivity increases only in the traditional sec-

tor and at a constant minuscule rate, and the level of the modern sector productivity is

low enough to make fertility an increasing function of the real wage.

There surely exists a set of initial values of state variables that further characterize the

initial SGE in Regime I as follows:

• net fertility and the rate of population growth are low,

• gross fertility is high,

• the traditional sector’s labor and output shares are large, and

• the levels of the standards of living are low.

The model inputs, i.e. structural parameters, initial values, and exogenous variables,

must be such that this initial equilibrium is sustained from t = 0 to some future period

under quasi-statis.

17. Strictly speaking, there exists a type of strong scale effect on the growth of Kt . This is discussed below
in Section 7.5.
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First, realistically suppose that st and ℓt are constant respectively at their historically

lowest levels s0 and ℓ0 for a long episode of history until the industrial revolution is near.

This returns a level of net fertility which is equal to

n0 =
(W0ℓ0− γ )s0

ρW0+ψ

Notice that, for sufficiently low W0, net fertility and the rate of population growth are

sufficiently low. Next, recalling that the labor share of the traditional sector is equal to

NT t

Nt

=

�

1

ℓ0Nt

��

XT t

W0

� 1
1−η

a restriction needs to be put on the growth of XT t to imply a quasi-static level of NT t/Nt .

It turns out that if ζ0 satisfies

ζ
η

1−η

0 = n0

the labor share NT t/Nt remains stable at its historically high level for long periods; slowly

increasing population requires slowly increasing traditional sector productivity at this

equilibrium.

The model thus explains the stagnation of output per worker y pw
t and output per

capita y pc
t at their historically lowest (constant) levels y pw

0 and output per capita y pc

0 if ζ0

satisfies the above condition, but the critical level of ζ0 is not arbitrary: If there is a stable

quasi-static equilibrium of sectoral shares of labor and output, this equilibrium has to be

characterized by stagnation of living standards.18

An important remark is in order: The initial quasi-static stagnation equilibrium just

characterized is not strongly Malthusian since the real wage that determines the level of

optimal fertility changes with the modern sector’s productivity but not with the level of

18. Regarding the knife-edge type of restriction that is put on ζ0, note that endogenizing the productivity
growth of the traditional technology via learning-by-doing as in Strulik and Weisdorf (2008) would
imply an automatically stabilizing dynamical system at the stagnation equilibrium just characterized.
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population. Increasing population in this model does not decrease the real wage. This

strong Malthusian link would be constructed by allowing the modern and the traditional

sector wages to differ in a richer framework of rural-urban migration.

Returning now to the equilibrium path, stagnation in strict sense ends when the econ-

omy eventually hits its invention threshold. Collective discovery, operating all along

during the stagnation, eventually closes the knowledge gap. The real wage starts increas-

ing, leading to increasing gross and net fertility. Increasing inventive effort initiates the

sectoral spillover from the modern to the traditional sector at some period, but faster

population growth and technological progress in the modern sector still imply declining

output and labor shares of the traditional sector. Once the modern sector productivity

is sufficiently large, gross fertility starts declining because adults’ time is now sufficiently

expensive. Decreasing population growth and still increasing inventive effort leads even

faster growth of output per capita/worker. On the other hand, urbanization and industri-

alization continue. At some advanced stage of economic development with a sufficiently

high modern sector productivity, net fertility becomes equal to its baseline level of unity

because the adult individual now finds it optimal to sustain reproductive success at its

limit. The stabilizing population in turn implies that the growth rate of the stock of

useful discoveries slows down. Even though the existing entrepreneurs keep discovering

new knowledge, each generation’s contribution gets marginally smaller compared to the

existing stock of discoveries. Once this slowing down starts, the increase of the inventive

effort starts decelerating. With constant population and constant fertility, the growth of

modern sector productivity converges to its maximum. In the future, according to this

model without material resource constraints other than that of labor, humanity faces no

limits in increasing prosperity.
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Chapter 5

The Timing of the Industrial Revolution: Some Tentative Results

The consensus view of world economic history emphasizes the lateness of modern eco-

nomic growth: The Industrial Revolution in England started around 50000 years later

than the rise of modern human populations, i.e. populations that share cultural univer-

sals such as language, art, religion, and toolmaking. If one rescales the history of mod-

ern human populations to 365 days, the Industrial Revolution would have had occurred

around 44 hours ago.

The model constructed and analyzed above suggests that living standards may stag-

nate for several millennia if purposeful invention in the modern sector is too costly, i.e. if

lives remain sufficiently short and the stock of useful discoveries remains sufficiently

small.

This chapter presents some tentative analytical results on the timing of the industrial

revolution in the model. The timing question basically asks which factors are most essen-

tial in explaining the length of time passed with stagnating standards of living in a given

economy for some fixed initial period.

From a methodological point of view, some may find the timing question very am-

bitious. This is due, in part, to the simplicity of the models that assume away several a

priori important aspects of the transition from stagnation to growth as the present model

does and, in part, to the complexity of the phenomenon being dealt with. Economic

historian Jones (2010, p. 245), e.g., claims that



There is no determinate solution to the puzzle of why the industrial revolution took
place, and where and when it did so. All that can be achieved is a narrowing of the
range of possible mixes.

The model, by providing answers to why the industrial revolution took place and

why that late, narrows the range of possible mixes in Jones’ (2010) terms. Yet, answering

questions such as "Why England, but not France or China?" and "Why 18th century, but

not the 14th?" is at best harder.

First of all, the timing question may not be simply separable from the location ques-

tion because a mechanism that explains the timing of the industrial revolution for a given

economy may provide insights to understand the absence of an industrial revolution in

another economy. As in Mokyr (2002), indeed, the collective discovery by entrepreneurs

not only explains the lateness of the industrial revolution in England but also implies that

China, with its infamously large bureaucracy and very low urbanization, did not benefit

from collective learning because of a lack of entrepreneurship.

Second, as suggested long ago by Crafts (1977), luck may have played a key role

to put England in front of France and other Western European nations for a few

generations in industrialization. The model-based cross-sectional calibration results of

Voigtländer and Voth (2006) indeed imply that France had a much higher likelihood of

industrialization than China on the eve of Industrial Revolution. A valid argument thus

can be made to reformulate the location question as "Why Western Europe, but not

China?"

Yet, there exists another difficulty about how pre-industrial economies should be

compared with regard to the timing of the industrial revolution. Pomeranz (2000), e.g.,

argues that, due to the regional diversity of big geographical areas such as Western Eu-

rope and China, the comparisons should be made between economies of appropriate

size. England, e.g., should be compared not with China as a whole but its most econom-

ically advanced Lower Yangzi region. In light of these difficulties, the tentative analytical

results on the timing of the industrial revolution should better be read as suggestive, not
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conclusive.

5.1 Preliminaries

Since we direct our attention to the DGE with a0 = 0, it is useful for future reference to

note that the modern sector productivity X t and the real wage Wt stagnate respectively

at

X 0 > 0 W0 = (1−λ)
1−λλλX

λ

0
> 0

Clearly, W0 is increasing in λ, for any X 0 > 0, if λ ∈ (0.5, 1).

5.1.1 First-Order and Second-Order Effects

One difficulty associated with the timing question is that the period t t r at which the

industrial revolution starts does not have a closed-form solution in terms of the model’s

parameters and state variables. Thus, the feasible analysis here is to question whether

a higher value of a relevant model parameter or of an exogenous state variable, ceteris

paribus, delays or hastens the start of the industrial revolution from the perspective of some

given period. That is, we fix a period t < t t r and ask, for each element of the vector

(st ,ℓt ,γ ,ψ,φ,ρ,η,θ,σ ,λ,ω),

whether the industrial revolution would be delayed or hastened if the chosen element

of the vector is higher than some benchmark value given the endogenous state variables.

These are labeled as first-order effects.

The second-order effects, remaining analytically implicit, are the ones that run through

the endogenous state variables. That is, when a model parameter is higher, it affects not

only the SGE of any fixed period t < t t r but also the SGE of t+1, t+2, and so on. As we

shall see in the next chapter, these second-order effects are indeed substantial especially

through the population growth.
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5.1.2 Threshold vs. Growth Effects

There are two types of first-order effects to be distinguished regarding the timing ques-

tion: First, there exists an endogenous and time-varying threshold K t r
t

that defines the

knowledge gap

Kt −K t r
t
= Kt − ξ

−1
�

θ−1
�

σ
λ

1−λ − 1
�−1

ℓ−1
t

�

for any given Kt . Clearly, for the inevitable industrial revolution to start, this gap should

be greater than or equal to zero at t t r . Hence, the threshold effect is related with the

question of how far away the industrial revolution is for some t < t t r .

The growth effect, on the other hand, is related with the question of how fast the

economy moves towards its invention threshold to decrease its knowledge gap, and the

(gross) growth rate gK t of Kt determines this speed for any given K t r
t

. Rewrite this growth

rate by substituting NT t/Nt and then W0 as

gK t = 1+ωℓt (1−λ)









1−
�

1

ℓt Nt

�







XT t

(1−λ)1−λλλX
λ

0







1
1−η

−
ρbt

ℓt









�

Nt

Kt

�

(5.1)

Notice that gK t changes with the level of optimal gross fertility bt . This separates the

analysis further into two cases, i.e. the start of the industrial revolution (i) in the regime

where fertility is increasing with the real wage and (ii) in the regime where fertility is

decreasing with the real wage.19 Therefore, we should rewrite gK t explicitly for each case.

For the regime where fertility is increasing with the real wage, (5.1) becomes

gK t = 1+ω(1−λ)







γρ+ψℓt

ρW0+ψ
−
�

1

Nt

��

XT t

W0

� 1
1−η







�

Nt

Kt

�

(5.1′)

19. The regimes in which nt = 1 are of minor importance for the present analysis since, for the economy
to be in such a regime, the real wage must already be sufficiently high.
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Table 5.1: The Timing of the Industrial Revolution: Case 1 (nt incr. w/Wt )

Experiment Threshold Effect Growth Effect
Higher st No Effect No Effect
Higher ℓt Hastening Hastening
Higher γ No Effect Hastening
Higher ψ No Effect Hastening
Higher φ No Effect No Effect
Higher ρ No Effect Delaying
Higher η No Effect Hastening
Higher θ Hastening No Effect
Higher σ Hastening No Effect
Higher λ Hastening Ambiguous
Higher ω No Effect Hastening

and, for the regime where fertility is decreasing with the real wage, we have

gK t = 1+ω(1−λ)







ℓt (ρW0+ψ)−ρφ

ρW0+ψ
−
�

1

Nt

��

XT t

W0

� 1
1−η







�

Nt

Kt

�

(5.1′′)

5.2 Results

The partial derivatives of K t r
t

and gK t with respect to model parameters and exogenous

variables identify the threshold and the growth effects given the set (Nt ,Kt ,X t ,XT t ) of

endogenous state variables.

Tables 5.1 and 5.2 summarize the results of the analysis. "No Effect" entries indicate

a partial derivative of zero. An "Ambiguous" entry on the other hand indicates a partial

derivative with an ambiguous sign.

In Tables 5.1 and 5.2, the threshold effects are identical and simply follow from strictly

increasing ξ −1(•). As discussed earlier, ℓt , σ and λ increase the return to inventive activ-

ity, and θ decreases the cost of it. The remaining model parameters and st do not generate

threshold effects.

Returning to the growth effects, first note that st does not generate growth effects,

neither in Case 1 nor in Case 2. This follows from the fact that gross fertility does not
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Table 5.2: The Timing of the Industrial Revolution: Case 2 (nt decr. w/Wt )

Experiment Threshold Effect Growth Effect
Higher st No Effect No Effect
Higher ℓt Hastening Hastening
Higher γ No Effect No Effect
Higher ψ No Effect Hastening
Higher φ No Effect Delaying
Higher ρ No Effect Delaying
Higher η No Effect Hastening
Higher θ Hastening No Effect
Higher σ Hastening No Effect
Higher λ Hastening Ambiguous
Higher ω No Effect Hastening

change with the survival probability in this model.20

A higher value of adult longevity ℓt has the hastening growth effect in both cases.

Entrepreneurs generate a larger number of useful discoveries if they live longer.

A higher value ofω, implying a higher "quality" of the process of collective discovery,

also hastens the industrial revolution in both Case 1 and Case 2.

A larger labor exponent η of the traditional technology implies a lower share of the

traditional sector and has the hastening growth effect in both cases.

More interesting are the effects of the parameters that determine gross fertility. The

unit good cost of reproduction ψ decreases gross fertility in both cases. Accordingly, a

higher value of ψ has hastening effects in both cases because a smaller volume of labor

endowment is allocated to child rearing due to the decreasing level of fertility. The unit

time cost parameter ρ, however, have the reverse effect. Even if a higher value of ρ

decreases gross fertility by increasing the cost of reproduction, it also directly increases

the total amount of hours allocated to child rearing. ρ generates a delaying growth effect

in both cases since the direct effect dominates.

A higher value of γ implies a lower level of gross fertility by tightening the budget

constraint of adults in the regime where fertility is increasing with the real wage. This

20. Notice that st does have a second-order (hastening) growth effect through Nt .
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is a hastening growth effect, but γ does not generate a growth effect in Case 2. Instead,

a growth effect in Case 2 is generated by φ. If adults prefer to have more children, this

translates into a delaying effect, again, by increasing the total amount of hours allocated

to child rearing.

The set of parameters that do not generate growth effects include θ and σ . Both are

technological parameters governing the return to the inventive effort, but they do not

affect the growth rate of Kt in any regime before the industrial revolution.

The labor exponent λ of the modern sector technology, in addition to its hastening

threshold effect, creates a growth effect. The direction of this growth effect however

remains ambiguous. In both Case 1 and Case 2, a higher value of λ may imply either a

lower or a higher mass of entrepreneurs because, technically, both fertility and the labor

share of the traditional sector change with W0 and hence with λ. For any given level

of W0, a higher value of λ would imply a lower mass of entrepreneurs since the level of

optimal demand for worker hours by entrepreneurs is larger on average. Yet, since W0

changes with λ, we have
∂ gK t

∂ λ
⋚ 0

in both Case 1 and Case 2.
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Chapter 6

The Quantitative Analysis

This chapter presents a quantitative analysis of the model economy. The purpose of this

analysis is threefold: First of all, a quantitative analysis of the model, disciplined empiri-

cally via formal calibration, is essential to evaluate the model’s success in explaining the

phases of economic development from pre-industrial times to the contemporary era. Sec-

ond, since the very long-run evolution of the model economy is of interest, this chapter

presents the simulations of the calibrated model economy and studies the transition to

its previously described asymptotic equilibrium. Finally, the timing question is revis-

ited quantitatively, and some counter-factual experiments, again based on the calibrated

model, are implemented to conclude which factors are most important in determining

the timing of the industrial revolution. These experiments are necessary since the tenta-

tive results presented in the last chapter do not reveal the overall timing effects of model

inputs.

6.1 Preliminaries

The empirical counterpart of the model economy is that of England since it is the first

industrialized economy in the world. Fortunately, England is also the economy of which

the largest data set on certain variables of interest is available compared to the other

Western European economies.
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Figure 6.1: Real Income, Real Wage, and Population in England: 1200-1860

Data Source: Clark (2009).

6.1.1 Time, Generational Growth Rates, and the Initial Period

Throughout the analysis, the model’s initial period is denoted by t = 1 and the length

of a period is taken to be 25 years, i.e. the lifetime of one generation. The growth rates

reported are hence generational growth rates per 25 years. The conversion to the annual

rates is not necessary since the interest is limited with the long-run evolution of the econ-

omy.
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Figure 6.2: Real NNI per capita and Population: 1650-2000

Notes: The original data source for both series is Clark (2009). Since the raw data
are decennial, mid-decade levels for 1675, 1725, and so on are calculated using simple
arithmetic average between closest decennial data. That is, the level of real N.N.I. per
capita in 1675, e.g., is equal to the average of those in 1670 and 1680 and so on.

The initial period t = 1 of the model economy is matched with the year 1650. The

reasoning behind this choice is threefold:

First, as argued earlier, the model is not designed to capture the Malthusian cycle be-

tween the real wage and the level of population. Since this type of Malthusian dynamism

in England ends at around the year 1650 after which both population and living standards

exhibit exponential growth, matching t = 1 with the year 1650 is not restrictive for the

present purposes (see Figure 6.1).

Second, the year 1650 is early enough to let the model economy to reveal the dy-

namics before the industrial revolution. Normalizing the start date of the latter to 1750,

matching t = 1 with the year 1650 gives us four generations, i.e. a century, to analyze the

growth of Kt and Nt before the industrial revolution.

Finally, satisfactorily rich data exist for England only for the period after mid-1500s.

As we shall see next, this is true both for the demographic variables and for the labor and

the output shares of the traditional sector.
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Figure 6.3: The Decline of the Traditional Sector: 1650-1975

Notes: The original data for the labor share of the modern sector is collected by
Clark (2001) for England, covering the period 1565-1865, and by Maddison (1995)
for the United Kingdom, covering the period 1820-1992. The data on the output
share of the modern sector is generated by Bar and Leukhina (2010a) using the raw
data from Clark (2001), Clark (2002), and Mitchell (1975). See Appendix A.1 of
Bar and Leukhina (2010a) for details.

6.1.2 The Data

Living Standards and Population

The quantitative analysis of the model, first of all, requires a measure of living standards.

This measure is real net national income per capita (real N.N.I. p.c.) estimated by Clark

(2009).21 The raw decennial data is next used to construct the time series from 1650 to

2000 with 25 year intervals by taking arithmetic averages for 25th and 75th years of any

century.

The population in England is another key macroeconomic aggregate, and the raw

data series is again borrowed from Clark (2009). This time series decennially runs from

1200 to 1860. To complete this series, the United Kingdom’s (decennial) census data for

21. Specifically, nominal net national income is deflated with the price index of net domestic output for
the period 1200-1860, and the index of real income per person is linked with the earlier series for 1860
and beyond. See Tables 28 and 34 in Clark (2009) for more details.
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England from 1871 to 2001 are used.22 Then, the decennial series is utilized to construct

the dataset of 1650-2000 period with 25 year intervals using the same principles applied

to the income data.

The Decline of the Traditional Sector

The measures of the structural transformation are the labor and the output shares of

the traditional sector. The declines of these ratios are associated respectively with ur-

banization and industrialization processes as in Bar and Leukhina’s (2010a) study, and

Bar and Leukhina’s (2010a) dataset on the labor and the output shares of the modern

sector is used to generate the associated shares.23 Figure 6.3 pictures the decline of the

traditional sector for the period 1650-1975.

Survival Probability and Adult Longevity

Figure 6.4 pictures the actual data and the fitted values for survival probability st and

(normalized) adult longevity ℓt . The fitted values for the period 1650-2250 are needed for

the long-run simulations and used instead of the actual data to design counter-factual ex-

periments in a systematic manner. Before discussing how these fitted values are obtained,

however, it is necessary to clarify the sources and the generation of the actual data.

The actual data series for the survival probability for ages 0-25 is based on the data

used by Bar and Leukhina (2010a).24 Bar and Leukhina’s (2010a) finalized data for st runs

from the mid-year 1612.5 to the mid-year 1987.5 in 25 year intervals. Setting the survival

probability for the mid-year 2012.5 to 0.995, the data series for the period 1625-2000 is

22. Strictly speaking, the census year is matched with the decade it starts; population of the year 1870 in
the completed series is the level of population recorded in 1871 census, and so on. Population data
from the U.K. censuses are available online at www.statistics.gov.uk/ website.

23. The dataset used by Bar and Leukhina (2010a) is obtained via personal communication with the au-
thors.

24. The original data sources are Wrigley et al. (1997) and Human Mortality Database. The latter is acces-
sible online at www.mortality.org/ website.
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Table 6.1: The Regression Results for the Exogenous Variables

The Logistic NLS Fit of st The Logistic NLS Fit of ℓt

Estimate 95% Con. Int. Estimate 95% Con. Int.
µs0 0.63 [0.62,0.65] µℓ0 0.42 (0.40,0.44)
µs1 1.15 [0.82,1.48] µℓ1 0.37 (0.31,0.44)
µs2 12.83 [12.54,13.11] µℓ2 15.75 (15.38,16.13)

S.S.E. 0.00502 S.S.E. 0.00432
R.M.S.E. 0.01967 R.M.S.E. 0.01823
Adj. R2 0.97820 Adj. R2 0.98230

generated using arithmetic averages.25

The data on adult longevity is constructed as follows: Using the period life expectancy

data of Wrigley et al. (1997) for the periods before 1825 and of the United Kingdom Na-

tional Statistics for the periods after 1850, the period life expectancy at age 25, denoted

by e25, is retrieved. Then, setting the maximum lifespan of humans to 100 years, the nor-

malized adult longevity corresponding to ℓt in the model, is generated by dividing e25 to

75 for all periods.

The fitted values for st and ℓt are obtained by estimating the following simple logistic

equations via Nonlinear Least Squares

st =µs0+
1−µs0

1+ exp
�

−µs1(t −µs2)
� + εs t

ℓt =µℓ0+
1−µℓ0

1+ exp[−µℓ1(t −µℓ2)]
+ εℓt

where t takes integer values starting from unity and εs t and εℓt are error terms. Table 6.1

summarizes the estimation results.

25. We shall see below that the value of st in 1625, i.e. in the model period t = 0, is needed to obtain a
model-based data counterpart for fertility.
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Figure 6.4: Survival Probability and Adult Longevity: Data vs. Fitted Values

Notes: See the text for a description of actual data. Fitted values are obtained through
Nonlinear Least Squares estimation of the logistic functions introduced. See Table
6.1 for the regression results.

Fertility Data

A data series needed for the quantitative analysis is that of gross fertility. The first alterna-

tive here would be to use the actual data on total fertility rate since it is explicitly defined

as a model variable. This however is not a completely fair way to judge the model’s ca-

pability of explaining fertility and population dynamics since the demographic structure

of the model is extremely simple with two generations, asexual reproduction, and a com-

mon gross fertility level for all adult individuals. Another alternative would be to derive

the model-based counterpart of the crude birth rate or the general fertility rate while

making some necessary corrections using the survival probabilities for different ages and
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Figure 6.5: The Measures of Gross Fertility in England: 1650-2000

Notes: Crude birth rate (CBR) and general fertility rate (GFR) measure the annual
number of live births respectively per 1000 people and per 1000 women of childbear-
ing age. The dashed line indicates the replacement level for a survival probability of
unity.

mid-year population levels. Yet, there is a third alternative which is clearly less tedious

than the second one. Since we have actual data series of population and survival prob-

ability, the model-based counterpart of gross fertility per adult can be easily obtained

using

bt =

�

Pt

Pt−1

��

1

st−1

��

1+ bt−1

bt−1

�

− 1

in a recursive way where this equation follows from Pt = (1+ bt )Nt and Nt+1 = st bt Nt .

The model-based data counterpart of total fertility rate is thus 2bt .

Figure 6.5 contrasts model-based total fertility rate described above with the actual

data on general fertility and crude birth rates collected by Bar and Leukhina (2010a).26

Clearly, and not surprisingly, the derived data, pictured in the upper-panel of Figure 6.5,

closely represents the dynamics of gross fertility measured by general fertility and crude

26. To generate the model-based total fertility rate data, smoothed population series and the logistic fit of
survival probability is used. 2bt−1 is taken to be 3.50. This is the maximum level of total fertility rate
that implies a non-decreasing adult population after 1650. Moreover, the dependency of bt series on
this initial value dies out rather quickly after 2 to 3 periods.
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birth rates. More importantly, if the model economy is successful in explaining the dy-

namics of model-based total fertility rate, it comes closer to explain the dynamics of the

level of population since st is exogenous.

The Share of Entrepreneurs

The last piece of data to be introduced, actually a single data point, is of the share of

entrepreneurs in adult population. The ratio 1 − et = (Nt − Et )/Nt in the model is

the share of all working-age individuals employed as (manual) workers. Thus, the share

of individuals working as non-manual workers such as managers and business owners

corresponds to the ratio et in the model. Fortunately, the data collected by Routh (1987)

exactly measures this: In 1975, 26.075% of all working-age individuals in England were

non-manual workers.

6.1.3 Parameterizing the ξ (K) Function

The last task before proceeding to the discussion of how the model parameters and initial

values are calibrated is to specify an explicit form for ξ (K) function. Since there does not

exist an empirically guided way of characterizing ξ (K) function beyond the restrictions

put earlier via (3.10), the quantitative analysis is based on the simplest functional form

satisfying these restrictions:

ξ (Kt ) = 1−
1

1+Kt

The reason behind specifying ξ (Kt ) without introducing a new structural parameter

is an identification difficulty. θ > 0 that represents the extrinsic productivity of unit

inventive effort is already separated from ξ (Kt ), and a parameter changing ξ (Kt ) for a

given value of Kt would not be identified without some additional data on discovery-

invention relationship.27

27. Note that another very simple form of ξ (Kt ) that satisfies (3.10) is ξ (Kt ) = 1− exp(−Kt ). Using this
functional form however does not change the qualitative nature of results.
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6.1.4 Calibration

To simulate the model via forward recursion, all model parameters and the initial values

of all endogenous state variables for t = 1, i.e. (N1,K1,X 1,XT 1), must be calibrated to

unique values. The purpose of the calibration exercise is to let the actual data determine

the calibrated values wherever possible.

Two difficulties with the calibration are the following: First, the model’s asymptotic

equilibrium, as an equilibrium at which most variables are fixed at their asymptotic levels,

cannot be used for the calibration basically because actual data do not exist for t →∞.28

This difficulty implies that a simulated method of moments type of calibration strategy

must be used; an algorithm that solves the model for a given set of parameters and initial

values and minimizes a quadratic form of deviations between model predictions and ac-

tual data. Second, since there exist a total of 12 equilibrium regimes and the purpose is to

match the observed timing of the industrial revolution and the demographic transition,

there exist hidden constraints on parameters and initial values. That is, the benchmark set

of parameters and initial values must ensure that the economy is in Regime I at t = 1 and

an industrial revolution starts at t = t t r = 5 that corresponds to 1750.

The calibration strategy is mixed: First, the value of a parameter is borrowed from

the literature to ease the calibration exercise. Second, each initial value is normalized or

calibrated from the data. Third, some identified parameters are solved using the relevant

data points that define a set of data targets. Finally, the remaining parameters are jointly

calibrated. That is, extending the set of data targets, a numerical algorithm is used to

determine the values of these parameters that minimize an objective function measuring

a distance between model predictions and data targets.

The labor exponent η ∈ (0,1) of the traditional technology is set to 0.537 which is cal-

ibrated by Bar and Leukhina (2010a) for England; the traditional technology postulated

28. By featuring nt = 1 and f N M
t
= 0, the model’s asymptotic equilibrium is in fact not completely in-

formative about all of the parameter values. Strictly speaking, though, the asymptotic growth rate of
modern sector productivity is restricted to identify one of the parameters; see below.
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by Bar and Leukhina (2010a) isolates the input of labor hours just as in this model.

The initial value N1 of adult population, measured in millions, is solved from N1 =

P1/(1+b1)where both population P1 and gross fertility per adult b1 are actual data values.

The calibrated value of N1 is 2.0718 millions.

K1 is normalized to unity. Notice that K1 and ω both affect the timing of the indus-

trial revolution. The normalization thus identifies ω given (i) the period at which the

industrial revolution starts, and (ii) other determinants of the growth of Kt .

Also normalized to unity is X 1. The arbitrariness here does not matter quantitatively

since (i) output (per capita) data is available as an indexed variable and (ii) there always

exists a value of γ > 0 that implies a given level of initial fertility for any value of X 1.

When the model predictions and the actual data are contrasted below, the model predic-

tions of output (per capita) and real wage, obtained under the normalization X 1 = 1, are

reindexed without any affect on the benchmark calibration results.

The last initial value XT 1 is identified only if we know ρ and λ. It turns out that

to calibrate all three of them in a single system of three equations is feasible. The first

equation of this system is (4.6) for t = 1 which is rewritten here as

NT 1

N1

=

�

1

ℓ1N1

�







XT 1

(1−λ)1−λλλX
λ

1







1
1−η

(6.1)

where the labor share of the traditional sector in 1650 solves XT 1 given λ since we already

have
�

η,N1,X 1

�

and ℓ1 from the fitted data. The second equation of the system, again

evaluated at t = 1, solves the output share of the traditional sector. Using the results

derived earlier, we can rewrite this equation as

YT 1

YT 1+Y1

=

X
1

1−η
T 1

�

(1−λ)1−λλλX
λ

1

�
η

1−η

X
1

1−η
T 1

�

(1−λ)1−λλλX
λ

1

�
η

1−η
+ (1−λ)

�

1− NT 1

N1
− ρb1

ℓ1

�

N1

�

λ
1−λ

�λ
X
λ

1
ℓ0

(6.2)

69



where b1, again, is a data point. Finally, the third equation solves the ratio of en-

trepreneurs in adult population from (4.9) for the year 1975 which corresponds to the

14th period of the model:

�

E14

N14

�

= (1−λ)
�

1−
NT 14

N14

−
ρb14

ℓ14

�

(6.3)

The set of (first-stage) data targets of the calibration exercise are thus

2b1, 2b14,
NT 1

N1

,
NT 14

N14

,
YT 1

YT 1+Y1

,
E14

N14

Using data values of these targets in advance, the unique solution to the system (6.1)-(6.3)

is (numerically) solved such that XT 1 = 0.3951, λ= 0.7102, and ρ= 0.0419.

Next, recalling that the initial gross growth rate ζ η0 of the traditional sector produc-

tivity should approximately be equal to n1−η
1 for output per worker to stagnate before

the industrial revolution, ζ0 is calibrated to 1.0154 given n1 = s1b1 from the data and

η= 0.537.

The remaining parameters are θ and π ≡ (σ ,ζ1,ω,φ,γ ,ψ). The former is identified

for any value of σ through the normalization of the asymptotic annual growth rate of

productivity to 2.5% given λ. Such a restriction is necessary because the model must

not be featuring a very large asymptotic growth rate that would be counter-factual to

the observed acceleration of the growth rate in the 20th century.29 Returning to the

parameters defining the vector π, a numerical algorithm is used to determine the values

of these five parameters; see below. Clearly, the resulting value of σ returns the value of

θ.

Let mdat a ∈ Rd
+

and m(π) ∈ Rd
+

respectively denote the vectors of actual data and

29. Recall that the model predicts that productivity growth accelerates towards the asymptotic equilibrium
given increasing Kt and ℓt .
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model predictions where d ∈N++. The objective function to be minimized is defined as

Q(π)≡
d
∑

r=1





mdat a
r
−mr (π)

0.5(mdat a
r
+mr (π))





2

where mdat a
r

and mr (π) correspond to r t h dimension of associated vectors, and mdat a ∈

Rd
+

and m(π) ∈Rd
+

vectors are of dimension d = 17 such that the targets include

• log(Output per capita) and log(Population) in 1650, 1750, 1850 and 2000,

• the labor and the output shares of the traditional sector in 1650, 1750, 1850 and

1975, and

• the share of entrepreneurs in 1975.

1650 data targets are included because it is the initial period (t = 1), and 1750 (t = 5)

is, again, the period at which industrial revolution starts. 1850 (t = 9) and 2000 (t =

15) are respectively the periods at which gross fertility is at its historical maximum and

minimum; the data for these periods are informative for parameters (φ,γ ,ψ). Finally,

1975 (t = 14) is included because the share of entrepreneurs and the labor and the output

shares of the traditional sector are available for these periods.

The numerical algorithm that returns π minimizes Q(π) under two hidden con-

straints. These constraints that ensure the SGE of period t = 1 is in Regime 1 are

• K1 < K t r
1

for the invention regime, and

• W1 < (φ+ γ )/ℓ1 for the fertility regime.30

The sampling algorithm imfil developed by C. T. Kelley is used to handle these

hidden constraints.31 This algorithm searches the parameter space for a global optima

30. Since a1 = 0, the spillover from the modern to the traditional sector is not active at t = 1. Thus, there
does not exist a hidden constraint for this.

31. The code and the documentation are available online at www4.ncsu.edu/~ctk/imfil.html website.
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Table 6.2: The Benchmark Calibration Results

Initial Values Symbol Value

Adult Population N1 2.0718
The Stock of Discoveries K1 1.0000
Mod. Sec. Productivity X 1 1.0000
Trad. Sec. Productivity XT 1 0.3951

Parameters Symbol Value

Labor Exponent of the Trad. Tech. η 0.5370
Constant Growth of Trad. Sec. Prod. ζ0 1.0154
Sectoral Spillover Parameter ζ1 1.1877
Labor Exponent of the Mod. Tech. λ 0.7102
Collective Discovery Parameter ω 1.3150
Gross Stepsize of Inventions σ 1.4866
Extrinsic Prod. of Inventive Effort θ 2.3952
"Subsistence" Consumption γ 0.1367
Fertility Preference φ 0.1223
Good Cost of Reproduction ψ 0.0376
Time Cost of Reproduction ρ 0.0419

while ignoring the parameter vectors that violate the hidden constraints. The algorithm

has been modified by randomized initial iterates since the exercises have shown that,

for some initial iterates, the algorithm returns a local optima of Q(π). Specifically, 3

million initial iterates for π have been randomly generated, and around 1 million of these

initial iterates have satisfied the hidden constraints of K1 < K t r
1

and W1 < (φ+ γ )/ℓ1

and the imposed target t t r = 5. The benchmark π is the one that implies the unique

global minimum of the objective function among those obtained for these 1 million or

so random iterates. The benchmark calibration results for all parameters and initial values

are collected in Table 6.2.
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Figure 6.6: Model vs. Data

Notes: Filled circles and squares respectively indicate the model predictions and the actual data described earlier. In the figure that shows
the productivity growth rate of the modern sector, the vertical and the horizontal lines respectively denote the period 1750 and the no-
growth baseline. The model’s predictions for level variables of output are reindexed without any effect on the benchmark calibration
results.
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Figure 6.7: The Invention Threshold and the Collective Discovery

Notes: The vertical line on the left panel indicates the period 1750.

6.2 Results

6.2.1 Some Simulations for the Calibration Period 1650-2000

Of prime interest is how the model performs in predicting the observed patterns, and

Figure 6.6 contrasts the model predictions with the actual data for the calibration period.

The model does not perfectly predict the actual data on output per capita, population,

fertility, and so on. On the other hand, even for the variables regarding which the model

performs least successfully, the overall pattern is captured by the benchmark calibration.

What requires a comment is the limited success of the model in predicting output

per capita before mid-19th century. Since the level of population in the model is simply

measured by (1+ bt )Nt , the fast increase in total fertility rate 2bt before 1825 leads the

model to predict a declining level output per capita before 1800. On the other hand, total

output is matched more successfully since it is not affected by how the level of population

in the model is defined.

Figure 6.7 pictures the stock Kt of useful discoveries and discloses the dynamics of

collective discovery. In the left panel, the decrease of the time-varying threshold K t r
t

with
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Figure 6.8: Some Equilibrium Relations

Notes: The model’s predictions for real wage are reindexed without any affect on the
benchmark calibration results.

increasing ℓt and the expansion of Kt are pictured. Naturally, the industrial revolution

starts at 1750 at which Kt > K t r
t

. In the right panel, on the other hand, the gross growth

rate gK t and the mass Kt+1−Kt of new discoveries are shown. Increasing Et and ℓt after

1800 explain the accelerating pace of collective discovery and the decelerating effect of

stabilizing population is observed in the last period.

In Figure 6.8, some equilibrium relations are pictured for the period 1650-2000. The

top left panel show the relationship between real wage and fertility, and the pull effect of

real wage on the traditional sector is observed in the bottom left panel. In the top right

panel, the arrival rate at of inventions is shown to increase with the stock of discoveries.

The intrinsic productivity ξ (K) of inventive activity, as it is presumed, is shown in the
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Notes: In the right panels, the areas of the figures represent, for each t , the total
available time endowments ℓt and ℓt Nt .

bottom right panel.

6.2.2 The Equilibrium Path over the Long-Run

The long-run evolution of the model’s static general equilibrium is pictured in Figure

6.9. The top left panel shows how the arrival rate at of inventions and the share et of

entrepreneurs in adult population increase during the transition and converge to their

asymptotic values. Importantly, the arrival rate exhibits a logistic shape because of slowly

increasing (Kt ,ℓt ) in the early stages of the industrial revolution. The top right and

the bottom right panels respectively show the entrepreneurs’ and the society’s optimal

use of time where the areas of the figures represent, for each t , the total available time
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Figure 6.10: Long-Run Gross Growth Rates (Smoothed)

Notes: The long-run growth rate of each variable is smoothed via robust loess proce-
dure with a span of 7 observations.

endowments ℓt and ℓt Nt . The transition to the asymptotic equilibrium is characterized

by the decline of management’s share to its asymptotic value while invention’s share, as

its rival, increases. For the society, a large fraction of total available time endowment is

spent on production (including management hours) with a slight decrease in time while

the remarkable trade-off is predicted to occur between reproduction and invention. That

is, the society from pre-industrial times to the modern era finds it optimal to invest more
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Figure 6.11: The Process of Collective Discovery over the Long-Run

in an intangible "asset", i.e. knowledge, and less in a tangible "asset", i.e. children.

Returning to the long-run growth rates, the model’s predictions for long-run growth

of living standards, population and productivity are shown in Figure 6.10. The smoothed

growth rates indicate the model’s overall success in explaining unified growth phenom-

ena. Further, the lateness of the peak of adult population growth indicates population

aging and the wedge between the sectoral productivity growth rates hints the decline of

the traditional sector once again.

The last figure to be discussed in this subsection, Figure 6.11, pictures the long-run

pattern of collective discovery. As argued earlier, the growth rate gK t converges to its

asymptotic level of unity. While this is happening, the stock of Kt itself attains a linear

time-series, converging to ∞, and the total lifetime Etℓt of entrepreneurs converges to

the constant E⋆ℓ⋆. Thus, collective discovery continues at an always decreasing rate. On

the other hand, recall that the inventive activity is not affected by how big the stock of

discoveries is for t →∞.
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Notes: See the text for a description of experimental specifications and the results.

6.2.3 Counter-factual Experiments and the Timing Question

Inspired by Desmet and Parente (2009), this subsection presents the results of some

counter-factual experiments on the timing of the industrial revolution. These experi-

ments are important because, once again, the analytical results presented in the previous

chapter do not reveal the overall effects of model inputs on the timing of the industrial

79



Table 6.3: The Timing Effects of Model Parameters

Parameter Symbol Experiment Industrial Revolution

Fertility Preference φ — No Effect
"Subsistence" Consumption γ 5% Higher Delayed for 1 generation
Time Cost of Reproduction ρ 25% Higher Delayed for 2 generations
Good Cost of Reproduction ψ 10% Higher Delayed for 1 generation

Collective Discovery ω 50% Lower Delayed for 2 generations
Labor Exp. of Mod. Tech. λ 10% Lower Delayed for 6 generations
Stepsize of Inventions σ 25% Lower Delayed for 3 generations
Extrinsic Prod. of Inv. Effort θ 50% Lower Delayed for 6 generations

Con. Gr. of Trad. Sec. Prod. ζ0 5% Higher Delayed for 1 generation
Sectoral Spillover Parameter ζ1 — No Effect
Labor Exp. of Trad. Tech. η 25% Lower Delayed for 1 generation

revolution due to the second-order effects. Besides, building on the benchmark calibra-

tion results, the timing question can be approached specifically for the England’s indus-

trial revolution. The results, however, should still be read only as suggestive because of

the simplicity of the model economy and the "ceteris paribus" assumption behind the

experiments.

The first set of experiments investigates the role of differing survival probability (st )

and adult longevity (ℓt ) levels. For each exogenous variable, some of the estimated pa-

rameters of logistic fits are altered ceteris paribus. Specifically, for st , (i) µs0 is decreased

from 0.63 to 0.6 in Experiment 1, (ii) µs2 is increased from 12.83 to 15 in Experiment

2, and (iii) Experiments 1 and 2 are merged to design Experiment 3. Similarly, for ℓt ,

µℓ0 is decreased by 0.01 units to 0.4165 and µℓ0 is increased to 18. Figure 6.12 shows the

resulting experimental inputs.

The results indicate that even such small changes in st and ℓt create effects on the

timing of the industrial revolution. For st , Experiments 1 and 3 imply that the industrial

revolution is delayed by one generation, starting at 1775, but no hastening or delaying

effect is found in Experiment 2. For ℓt , Experiment 1 and 2 also imply a one-generation

delay, but the delay is equal to three generations when these changes merged in Experi-
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ment 3.

The second, the third and the fourth sets of experiments respectively investigate the

effects of (i) (φ,γ ,ρ,ψ) that directly affect population growth, (ii) (ω,λ,σ ,θ) of inven-

tion and collective discovery technologies and (iii) (ζ0,ζ1,η) that governs the productivity

growth and the size of the traditional sector. Table 6.3 summarizes the results.

First recalling that fertility preference φ does not have threshold and growth effects

when the industrial revolution occurs before the fertility decline, the timing of the indus-

trial revolution is not affected by φ under the benchmark calibration. Next note that the

sectoral spillover parameter ζ1 does not create timing effects as expected. Another note-

worthy result is that the hastening growth effects of parameters γ and ψ are dominated

by the second-order effects on population growth. That is, when γ and ψ are higher than

their benchmark levels, ceteris paribus, the associated decreases in the rate of population

growth before the industrial revolution decreases the growth rate gK t of useful discoveries

with Nt/Kt now being allowed to change. Finally, it should be noted that the ambigu-

ity of the effect of λ is resolved such that the threshold effect dominates the supply of

entrepreneurship effect. That is, when λ is lower than its benchmark level, there exist

more entrepreneurs that collectively discover but invention becomes optimal later than

the benchmark due to the smaller contribution of inventions to profits.

Overall, the counter-factual experiments show that small deviations from the bench-

mark model create large timing effects. Even if the model is not applied as a prototype

model of the industrial revolution to economies other than England, the counter-factual

experiments suggest that gains in adult longevity or the quality of collective discovery,

e.g., might have played non-trivial roles in the timing of England’s transition to modern

economic growth. The bigger questions such as whether the first industrial revolution

did not occur in China really because of the low quality of collective discovery there or

whether the first industrial revolution could not have occurred in Sub-Saharan Africa

really because of its disease environment remain open.
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Chapter 7

Discussion

This chapter provides brief discussions on some aspects of the model and shows that

the model can be extended in ways that may provide further insights on the role of en-

trepreneurship and knowledge for the Industrial Revolution.

7.1 The Industrial Revolution: Break or Continuity?

The unified growth model studied above has a stark implication: Entrepreneurs of a

"special" generation find it optimal to direct resources into risky inventive activities un-

like those of past generations. These entrepreneurs are "special" because the number of

useful discoveries they have access to, given their longevity, is large enough to signal a

higher expected level of profit for them if they are to decrease the time they could spend

to routine management. In a sense, they benefit from standing on the shoulders of dead

entrepreneurs who collectively created all these useful discoveries in a serendipitous way.

The invention threshold in the model leads to a kinked time-series of labor productiv-

ity in the modern production sector, and this in turn implies a kinked time-series of the

real wage that exhibits exponential growth starting with the industrial revolution. The

Industrial Revolution in history is matched by an invention revolution in the model. Af-

ter this invention revolution, exerting inventive effort to appropriate an increasing profit

remains optimal throughout the history. Figure 7.1 shows the data collected by Sullivan

(1989) on the number of process innovations patented in England.
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Figure 7.1: Patented Process Innovations in England, 1661-1850

Whether the first Industrial Revolution, roughly covering the period from 1760 to

1830, is a break from the past or a continuity has remained controversial among some

economic historians. The gradualist view of Crafts and Harley (1992) suggests that there

was little economic growth in England until the early 19th century in per capita terms

and that the scope of fast technological progress was limited with the textile sector before

the diffusion of the steam technology. The first argument has later been advanced by

new estimates of Clark (2001), yet the notion of an industrial revolution as a structural

break characterized by very slow growth in per capita terms is not controversial at all.32

Studied extensively by Pereira (2003), several variables of interest, including total indus-

trial output and population, exhibit endogenously determined upward breaks during the

first Industrial Revolution, and Mokyr (2004) and others suggest that what kept output

32. As noted by Crafts’s (2005, p. 533), "[g]radualism in the transition to modern economic growth should
not be confused with an absence of fundamental change."
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per capita at a very low level during the first Industrial Revolution was indeed the fast

expansion of English population. 33

The model economy constructed and studied above, as a unified model, captures ex-

actly this type of dynamics between population and technology. The predicted time-

series of output per capita does not exhibit growth for a couple of generations after the

start of the industrial revolution, and increasing output due to endogenous technolog-

ical progress hardly overcomes the population pressure until the pace of technological

progress becomes fast enough.

The model economy’s industrial revolution thus fits well with the notion of a struc-

tural break without conflicting with the view that a sort of continuity with the past exists.

In essence, the period at which the industrial revolution in the model starts is determined

by the latent dynamics of the model economy before the industrial revolution.

7.2 Serendipitous Inventions

That the rate of technological progress in the modern production sector before the Indus-

trial Revolution is zero is counter-factual to what we observe in the data: As noted earlier,

the real wage series in England has an upward trend after mid-1600s, and a minuscule rate

of growth in the real wage before the Industrial Revolution is also consistent with the

patent data of Sullivan (1989): The number of patented process innovations per year, al-

beit being trendless, implies minor improvements in productivity and hence in the real

wage. A question of interest is thus whether the model can be extended to account for

such haphazard type of technological progress.

The simplest extension along this line of thought is to allow for serendipitous in-

ventions to exogenously increase the baseline productivity X t of the modern sector.

33. Temin (1997), attacking the second argument of the gradualist view, shows that England was a net ex-
porter not only in cotton textiles and iron goods sectors where technological progress was fast but also
in many other industries. Crafts and Harley (2000), in defense, use a computable general equilibrium
model that shows exports may increase in the absence of sectoral technological progress. Pereira (2003)
rightly argues that those of Temin (1997) and Crafts and Harley (2000) were indirect tests.
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Serendipitous inventions can be thought of as resulting exogenously without altering the

optimal behavior of entrepreneurs regarding the inventive activity. The law of motion

for X t can simply be extended to include serendipitous inventions as in

X t+1 =X t exp[(σ − 1)(at + as )]

where as > 0 represents the arrival rate of serendipitous inventions under the additional

assumption that a serendipitous invention has the same stepsize σ > 1 of a purposeful

invention. Clearly, whenever at = 0, the gross growth rate of X t reduces into exp[(σ −

1)as].

If allowed to be a positive number, the arrival rate as of technological progress through

serendipitous inventions would affect the timing and the pace of demographic transition

and structural transformation through the real wage channel. The qualitative nature of

the model’s analytical results, most notably the existence of an invention threshold, nev-

ertheless remain same under this simple extension.

7.3 Managers vs. Inventors

One legitimate concern might be over the presumption that entrepreneur and inventor

is the very same individual in the model. This presumption, recalling the motivating

evidence by Meisenzahl and Mokyr’s (forthcoming), is the simplest way to let inventors

be incentivized via profit motive within the occupational choice framework adapted.

In a simple alternative formulation in which inventors are still incentivized by profit

shares, entrepreneurs spend their entire labor endowment to management and make con-

tracts with "freelance" inventors for the latter to undertake the inventive activities. Under

certain simplifying assumptions, the invention threshold property of the basic model is

preserved.

A "freelance" inventor is in essence a worker who may find it optimal to spend some

of her labor endowment to inventive activities. To completely assume away search and
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matching frictions previously emphasized by Michelacci (2003), suppose that an inventor

is always matched with an entrepreneur. To simplify the matters even more, let the con-

tract between entrepreneur i and inventor i be such that an exogenously given fraction

1− νt ∈ (0,1) of firm i ’s ex post profit is appropriated by inventor i .34 This variable can

thus be argued to represent a dimension of the quality of innovation-promoting institu-

tions in period t as in Jones (2001).

Inventor i ’s expected (lifetime) earning under these assumptions can be written as

(1− νt )exp
�

Σai t

�

Λ





X t

Wt





Γ

ℓt +Wt

 

ℓt −
ai t

θξ
�

Kt

�

!

where the first term indicates the expected profit obtained by inventor i and the second

term is her wage income. Since fertility choice by inventor i is still separable from the

choice of ai t , optimal inventive effort is zero if

(1− νt )ξ
�

Kt

�

ℓt <
h

θ
�

σ
λ

1−λ − 1
�i−1

and the start of an industrial revolution not only requires a large enough stock of discov-

eries and a high enough adult longevity but also depends crucially on whether the society

sufficiently rewards its potential inventors.35

7.4 The Fishing Out Effect

One noteworthy aspect of productivity growth in the simple version of the model is

the absence of the so-called fishing out effect: The (unit) productivity of labor directed

to inventive activity does not change and, hence, not decrease with the level of baseline

34. Ideally, νt could be allowed to follow endogenously from a bargaining problem between the en-
trepreneur and the inventor as in Michelacci (2003). A closed-form solution to the model in this case,
however, does not exist.

35. Note that the unique SGE of this version of the model still features occupational choice through

νt EΠi t =Wtℓt = (1− νt )exp
�

Σai t

�

Λ
�

X t

Wt

�Γ

ℓt +Wt

�
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�
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productivity X t . No matter how high X t is, the arrival rate ai t of inventions is fixed for

given levels of Kt and Hr i t . The endless expansion of Kt makes inventive effort always

more productive in time as postulated, but the only limit realistically imposed is on the

level of this epistemic effect when Kt →∞.

To incorporate the fishing out effect by making the arrival rate ai t a decreasing func-

tion of X t , the productivity term ξ (Kt ) of the model can be redefined as ξ (Kt ,X t )which

satisfies
∂ ξ (Kt ,X t )

∂ X t

< 0 for all Kt

Here, it is again required that, for any X t <∞,

∂ ξ (Kt ,X t )

∂ Kt

> 0 for all Kt <∞ ξ
�

0,X t

�

= 0 lim
Kt→∞

ξ
�

Kt ,X t

�

= 1

Not surprisingly, the invention threshold and the asymptotic equilibrium of the

model would be affected from the presence of the fishing out effect: A higher initial

level X 0 of modern sector productivity unambiguously delays the start of the industrial

revolution. This, in a sense, is a technological lock-in result and is itself interesting as a

theoretical possibility, but the hypothesis of induced innovation, applied to the Industrial

Revolution by Allen (2011), weakly rejects this possibility to be true: The real wage in

urban areas of Britain was higher in comparison to those of other European cities.

Returning to the asymptotic equilibrium, the fishing out effect may lead the asymp-

totic growth rate of modern sector productivity and output per capita to converge to

zero. To be specific, let ξ (Kt ,X t ) be defined as

ξ (Kt ,X t )≡ 1−
1

1+ Kt

X t

which is possibly the simplest functional form that satisfies the restrictions stated above.

The advanced stages of economic development under this scenario are characterized by

87



the decline of the knowledge-productivity ratio

kt ≡
Kt

X t

to its invention threshold

k t r
t
≡

1

θ
�

σ
λ

1−λ − 1
�

ℓt − 1

because the (gross) growth rate gK t of the stock of discoveries again converges to unity

with the maximum level N ⋆ of adult population being constant.36 The model therefore

asymptotically behaves like the semi-endogenous (unified) growth model of Jones (2001)

and the model of Strulik and Weisdorf (2008) due to the fishing out effect. The actual

very long-run growth rate of income per capita on the other hand does not exhibit a

downward trend for the developed economies. Overall, the implications of the fishing

out effect seem to be contradicting with observed patterns.

7.5 The Scale Effect in the Process of Collective Discovery

Since the mass Et of entrepreneurs is proportional to adult population Nt , the process

of collective discovery is characterized by a scale effect. Specifically, given the share et of

entrepreneurs in adult population, the growth rate gK t of the stock of useful discoveries

is increasing in Nt :

gK t = 1+
ωℓt Et

Kt

= 1+
ωℓt (1−λ)

�

1− NT t

Nt
− ρbt

ℓt

�

Nt

Kt

This scale effect may raise the question of why economies that had bigger populations

in pre-industrial era compared to England, e.g., China, did not achieve the first industrial

revolution even though, as argued in Chapter 5, such questions should be formulated

with great care. If taken seriously, still, an answer to the question is provided by the

36. Note that the asymptotic equilibrium thus characterized is globally stable.
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determinants of collective discovery other than Nt : It is not solely the mere totality of

adult hours ℓt Nt that explains the growth rate of Kt but also (i) the quality ω of the

process of collective discovery and (ii) the share et of entrepreneurs in adult population.

As noted earlier, ω as a structural parameter represents the quality of the environ-

ment in which entrepreneurs create and share useful discoveries. England here had the

advantage of being a small country with respect to (absolute) geographical size. Also

advantages of England, as argued by those stressing the role of collective discovery and

industrial enlightenment, are (i) the gentlemanly behavior and the technological motiva-

tion of business owners and (ii) the efficiency of social networks and informal institu-

tions. A sufficiently large ω for England may well have dominated the negative effect of

its comparatively small population.

Returning to the share of entrepreneurs, first note that pre-industrial fertility lev-

els around the world were not significantly different. If one further assumes that pre-

industrial longevity levels and parameters λ and ρwere similar in England and elsewhere,

the prime determinant of the share of entrepreneurs would be the size of the traditional

sector. The limited data here indicates that England in pre-industrial times had a higher

rate of urbanization than China; see Voigtländer and Voth (2006).

In general, any rival use of time endowment is important in determining the supply

or, put more correctly, the lack of entrepreneurship, and the labor shares of occupations

that do not contribute to collective discovery would have delaying growth effects for the

timing of the industrial revolution.

One such occupation regarding which England had arguably an advantage compared

to China is state bureaucracy. Imagine, first, a richer framework with a political authority

where bureaucrats are employed by the state to produce a public good. A larger state

bureaucracy in this case would decrease the growth rate of Kt , ceteris paribus, because the

mass of entrepreneurs who collectively discover would be smaller. This is true (i) whether

the bureaucracy is financed through distortionary taxation or not and (ii) whether the

productivity of a unit hour of a bureaucrat in producing the public good in question is
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increasing or stagnant. Obviously, if the bureaucrats work with stagnant productivity,

sustained growth in social welfare is not possible before an industrial revolution, and a

small state bureaucracy is a desired feature to increase the supply of entrepreneurship

ceteris paribus. England might indeed have benefited from avoiding a large professional

bureaucracy, as noted by Mokyr (1998), and China’s potential might indeed have been

restricted by its large and ineffective bureaucracy, as emphasized by Landes (2006).

7.6 Science and Scientists

The anecdotal evidence show that professional scientists’ direct contribution to the first

Industrial Revolution was limited. Also well-known is that British inventors, compared

to those of other European nations, were particularly successful in applied sciences that

built heavily upon the abstract contributions of, e.g., German and French scientists. That

there does not exist a strong causality running from scientific progress to an industrial

revolution is also supported by the fact that neither China nor the Islamic civilization,

both scientifically superior to Europe at certain eras of antiquity, did realize an earlier

industrial revolution. All these, together with the lack of reliable data on the number of

scientists and a useful theoretical framework of the economics of science, motivate the

model to exclude the role of science and scientists for the process of collective discovery.

A unified growth model that exploits the nexus between discoveries and inventions

might nevertheless be expected to incorporate the role of science and scientists. One of

the most important actor of the story of technological progress after the first Industrial

Revolution is surely the professional scientist, and three questions, at least, remain open

for the unified growth theory. First, why and how the grant-like forms of science pa-

tronage dominated the prize-like forms of it starting with the 18th century, a pattern

documented by Hanson (1998), is central to the rise of professional scientists. Second,

as emphasized by Pumfrey and Dawbarn (2004), science patronage exhibited a historical

transition from being mostly ostentatious to being mostly utilitarian, starting first in the
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16th century England. Finally, there does not exist a formal economic theory of the Sci-

entific Revolution which was another major discontinuity in the history of mankind. A

network model of the Scientific Revolution, once hinted by Kelly (2005), may be a use-

ful starting point to understand the formation and the movement of European scientist

networks between 1400 and 1900 documented by Taylor et al. (2008).

7.7 Endogenous Survival and Longevity

The model restricts the knowledge content of useful discoveries with the knowledge of

natural phenomena that are related solely with the production processes. In a richer

framework with scientists, discoveries could be thought of being applicable also to

medicine. This second role of useful knowledge is exactly what Easterlin (1995) sug-

gests; the Mortality Revolution of Europe did crucially depend on the creation and the

diffusion of useful medical knowledge just as the Industrial Revolution benefited from

the advances in physics, chemistry, geology, and other fields. In England, for example,

the number of published books on health grew 9-fold from 1600 to 1800 as noted by

de la Croix and Sommacal (2009).

In addition to the models that postulate a knowledge-mortality link via human capi-

tal accumulation, e.g. Cervellati and Sunde (2005) and Lagerlöf (2003), the conjecture has

been formalized by Mokyr (1993) and more recently within unified growth frameworks

by de la Croix and Sommacal (2009) and Strulik and Weisdorf (2011). Note that endo-

genizing survival probability (st ) and adult longevity (ℓt ) in a richer framework with

scientists would pose no serious analytical difficulties. Given that (i) the stock of useful

discoveries would still be growing along the transition and (ii) st and ℓt would still have

the logistic shapes fitted against time in the present formulation, the only complication

is to calibrate the parameters of two logistic functions of Kt , one for st and the other for

ℓt .
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Chapter 8

Concluding Remarks

A transition characterizes the economic history of today’s developed economies. This is

a transition from stagnating to growing levels of material living standards. It involves the

declines of mortality and fertility rates with a bell-shaped pattern of population growth

through time, i.e. the demographic transition. (Adult) longevity, the participation to and

the length of formal education, the openness to trade, and the levels of urbanization and

industrialization all increase along this transition. Democracy, the last but not the least,

becomes persistent in the developed world where the transition had first started. In short,

this is the transition to what social scientists call modernity. This, in Clark’s (2007, p. ix)

words, is big history.

The turning point of big history was the Industrial Revolution which represents

a structural break in the sense that technological progress was no longer simply due

to serendipitous inventions. Schumpeter’s (1934) "entrepreneur-inventor"s, seeking in-

creased market shares and profits, took the stage instead, and the world was not the same

when the first corporate R & D lab was opened by Thomas Edison in 1876.

This dissertation studies a view of the Industrial Revolution that promotes the dual

role of entrepreneurship for inventions and discoveries; the serendipitous expansion of

the latter eventually leads to purposeful activation of the former. No such thing as an

industrial revolution occurred for a very long episode of history because not enough was

known about natural phenomena and lives were very short. Yet the type of useful knowl-



edge relevant to production processes was created by and diffused among entrepreneurs.

In one sense, it had to be because they were managing the firms utilizing these production

processes.

The simple unified growth model of this mechanism constructed in this dissertation

leaves many questions, other than the ones discussed in the previous chapter, open for

further research. First, the emphasis is biased on the supply-side determinants of inven-

tive activity, and the roles of market size and demand remain implicit within the two-

occupation general equilibrium framework. How inventions are brought to markets as

innovations is no less an important question. Second, the model simply features perfectly

competitive innovation, and the role of patents for the industrial revolution, still contro-

versial among economic historians, is ideally to be incorporated within a richer treat-

ment. Third, the effects of knowledge diffusion on European and global scale, through

the mobility of goods and people, is yet to be explored in a unified growth framework.

The simple model of this dissertation may serve as a starting point of such an explo-

ration. The last but not the least, how the rises of democracy and formal education are

interrelated with the enlightenment of the economy through useful knowledge is an open

question.
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Appendix A

Proofs

Proof of Lemma 1:

(3.17′) can simply be rewritten as

EΠi t = exp
�

−ai t

�

(1−λ)λ
λ

1−λ





X t

Wt





λ
1−λ
 

ℓt −
ai t

θξ
�

Kt

�

!

∞
∑

z=0

az
i t
σ(

λ
1−λ)z

z !

after some arrangements. By Taylor’s Theorem, the summation term on the right is

identical to exp
�

σ
λ

1−λ ai t

�

. Thus, we have

EΠi t = exp
�

σ
λ

1−λ ai t − ai t

�

(1−λ)λ
λ

1−λ





X t

Wt





λ
1−λ
 

ℓt −
ai t

θξ
�

Kt

�

!

Defining and substituting Γ ≡ λ
1−λ , Λ ≡ (1− λ)λ

λ
1−λ , and Σ ≡ σ

λ
1−λ − 1 yield (3.17′′) and

complete the proof. �

Proof of Proposition 1:

The uniquely existing SGE follows from three features of the model:

1. Both decision problems have unique solutions since the objective functions are

strictly quasi-concave and differentiably continuous on compact choice sets.

2. At these unique solutions, a unique level of real wage makes individuals indifferent

between becoming an entrepreneur and becoming a worker.
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3. This unique level of real wage is also the one that clears the labor market and, hence,

that (residually) determines the mass of entrepreneurs.

Starting with the workers’ problem characterized by (3.23) and (3.24), the Kuhn-

Tucker F.O.C.s imply

∂ Uw t

∂ nw t

=−
�

1

st

�

�

ρWt +ψ
�

+
φ

nw t



















< 0 if nw t = 1

> 0 if nw t =
(Wt ℓt−γ )st

ρWt+ψ

= 0 otherwise

Thus, optimal net fertility by workers satisfies

nw t =



















(Wt ℓt−γ )st

ρWt+ψ
if Wt <

φ+γ

ℓt

φst

ρWt+ψ
if Wt ∈

h

φ+γ

ℓt
, φst−ψ

ρ

i

1 if Wt >
φst−ψ
ρ

(A.1)

Next note that the entrepreneurs’ problem characterized by (3.26)-(3.28) is separable

in ni t and ai t . With respect to the latter, we have

∂ EUi t

∂ ai t

= exp
�

Σai t

�

Λ





X t

Wt





Γ

−
1

θξ
�

Kt

� +

Σ

 

ℓt −
ai t

θξ
�

Kt

�

!









< 0 if ai t = 0

= 0 if ai t ∈
�

0,amax
t

�
(A.2)

Hence, there always exists a unique solution ai t ≥ 0.37 Moreover, this solution is symmet-

ric, i.e. ai t = at ≥ 0 for all i , since all entrepreneurs face the same set of given variables.

In turn, the expected profit EΠi t is unique as well:

EΠi t = exp
�

Σat

�

Λ
�

X t/Wt

�Γ �
ℓt − at/θξ

�

Kt

��

(A.3)

37. Notice that (i) the S.O.C. for maximum is satisfied at this solution, and (ii) ai t = amax
t

is never optimal
because it implies zero profits.
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With respect to fertility ni t , the Kuhn-Tucker F.O.C.s imply

∂ EUi t

∂ ni t

=−
�

1

st

�

�

ρWt +ψ
�

+
φ

ni t



















< 0 if ni t = 1

> 0 if ni t =
(EΠi t−γ )st

ρWt+ψ

= 0 otherwise

Therefore, optimal net fertility by entrepreneurs satisfies

ni t =



















(EΠi t−γ )st

ρWt+ψ
if EΠi t <φ+ γ

φst

ρWt+ψ
if EΠi t ≥φ+ γ and if Wt ≤

φst−ψ
ρ

1 if Wt >
φst−ψ
ρ

(A.4)

Lemma A.1: In the unique SGE, we have nw t = ni t = nt .

Proof — The intuition behind this lemma is twofold: First of all, the total cost of re-

production in terms of gross fertility, denoted by ρWt +ψ, is identical to workers and

entrepreneurs. Second, entrepreneurs and workers, in equilibrium, are forced to derive

equal (expected) utilities, i.e. EUi t =Uw t .

Formally, the equal utilities restriction can be rewritten as

EΠi t −
�

ψ+ρWt

�

�

ni t

st

�

+φ ln
�

ni t

�

=Wtℓt −
�

ψ+ρWt

�

�

nw t

st

�

+φ ln
�

nw t

�

(A.5)

In what follows, nw t is taken as a benchmark, and it is shown, for each characteriza-

tion of nw t , that nw t 6= ni t leads to a contradiction.

• The Case of nw t =
(Wt ℓt−γ )st

ρWt+ψ
:

In this case, we must have from (A.1) that

Wt <
φ+ γ

ℓt

(A.6)

– ni t = 1 in this case leads to a contradiction because (A.4) implies Wt >
φst−ψ
ρ

.
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– ni t =
φst

ρWt+ψ
requires EΠi t ≥φ+γ and Wt ≤

φst−ψ
ρ

from (A.4), and (A.5) now

reads

EΠi t −φ+φ ln

�

φst

ρWt +ψ

�

= γ +φ ln

�

(Wtℓt − γ )st

ρWt +ψ

�

EΠi t − (φ+ γ ) = φ ln

�

Wtℓt − γ

φ

�

Note from (A.6) that the R.H.S. must be a negative number. On the other

hand, EΠi t ≥φ+γ implies that the L.H.S. is non-negative. Hence, we have a

contradiction.

– The remaining task for the case of nw t =
(Wt ℓt−γ )st

ρWt+ψ
is to make sure that EΠi t =

Wtℓt when EΠi t < φ+ γ . Re-writing (A.5) for nw t =
(Wt ℓt−γ )st

ρWt+ψ
and ni t =

(EΠi t−γ )st

ρWt+ψ
confirms this:

γ +φ ln

�

(EΠi t − γ )st

ρWt +ψ

�

= γ +φ ln

�

(Wtℓt − γ )st

ρWt +ψ

�

ln

�

(EΠi t − γ )st

ρWt +ψ

�

= ln

�

(Wtℓt − γ )st

ρWt +ψ

�

EΠi t = Wtℓt

• The Case of nw t =
φst

ρWt+ψ
:

In this case, we must have from (A.1) that

Wt ∈
�

φ+ γ

ℓt

,
φst −ψ

ρ

�

– ni t = 1 again leads to a contradiction because (A.4) implies Wt >
φst−ψ
ρ

.

97



– ni t =
(EΠi t−γ )st

ρWt+ψ
requires EΠi t <φ+ γ . (A.5) in this case reads

γ +φ ln

�

(EΠi t − γ )st

ρWt +ψ

�

= Wtℓt − (φ) +φ ln

�

φst

ρWt +ψ

�

φ ln

�

EΠi t − γ

φ

�

= Wtℓt − (φ+ γ )

Once again, we have a contradiction because the L.H.S. is negative and the

R.H.S. is non-negative.

– Note that ni t =
φst

ρWt+ψ
as in the previous case confirms EΠi t =Wtℓt via (A.5).

• The Case of nw t = 1:

In this case, we must have from (A.1) that

Wt >
φst −ψ

ρ
(A.7)

– ni t =
φst

ρWt+ψ
leads to a contradiction because (A.4) implies Wt ≤

φst−ψ
ρ

.

– ni t =
(EΠi t−γ )st

ρWt+ψ
requires EΠi t <φ+ γ . (A.5) in this case reads

γ +φ ln

�

(EΠi t − γ )st

ρWt +ψ

�

= Wtℓt −
�

ψ+ρWt

�

�

1

st

�

+φ ln (1)

φ ln







EΠi t − γ
ρWt+ψ

st






= Wtℓt − γ −

�

ψ+ρWt

st

�

= Wt

�

ℓt st −ρ

st

�

−
�

γ st +ψ

st

�

=

�

ℓt st −ρ

st

��

Wt −
γ st +ψ

ℓt st −ρ

�

Since (A.7) implies ρWt+ψ

st
> φ, the L.H.S. of this last equation is negative
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given EΠi t <φ+ γ . The R.H.S. is on the other hand positive because

Wt >
φst −ψ

ρ
>
φ+ γ

ℓt

where the second inequality implies

φ>
ψℓt +ργ

ℓt st −ρ

Since we have Wtℓt − γ > φ as well, Wtℓt − γ >
ψℓt+ργ

ℓt st−ρ
implies that Wt >

γ st+ψ

ℓt st−ρ
.

– Finally, note that ni t = 1 as in the previous cases confirms EΠi t =Wtℓt via

(A.5).

Hence, we conclude that the equal utilities restriction EUi t = Uw t is satisfied with

EΠi t =Wtℓt and nw t = ni t = nt . �

To proceed, notice that EΠi t =Wtℓt and (A.3) solve Wt given the unique solution

at ≥ 0 that follows from (A.2). Next, given at , (3.9) implies hr i t = hr t , and (3.18) then

returns hmi t = hmt for the given level of ℓt . Given Wt , on the other hand, the unique

SGE levels of
�

HT t ,NT t ,YT t

�

follow respectively from (3.20), (3.21) and (3.12′). Note

that the realizations of stochastic variables zi t and Xi t simply follow from (3.8) and (3.7),

respectively. Given productivity Xi t , (3.15), (3.16) and (3.5) respectively solve the unique

SGE levels of
�

hwi t ,Πi t ,Yi t

�

. (3.22) solves Cw t , and (3.25) solves Ci t . Thus, only Et and

Yt remain to be solved.

What solves Et is the labor market clearing condition (3.30). To see this, first recall

that the arrival rate at is common across entrepreneurs. This and the fact that invention

events are independent across entrepreneurs imply, via (Borel’s version of) the law of

large numbers, that the ex post fraction of entrepreneurs with z ≥ 0 inventions for any

given at is equal to the ex ante Poisson probability
az

t
exp(−at )

z!
of achieving z ≥ 0 inventions.
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This property allows us to write

Et
∫

0

hwi tdi = Et

∞
∑

z=0





az
t

exp
�

−at

�

z !



 hw t (z) (A.8)

where hw t (z) reads, as implied by (3.15),

hw t (z)≡ λ
1

1−λσ(
λ

1−λ)z









X
λ

1−λ

t

W
1

1−λ
t









 

ℓt −
at

θξ
�

Kt

�

!

Applying the reasoning of Lemma 1 to the R.H.S. of (A.8) implies

Et
∫

0

hwi tdi = Et exp
�

Σat

�

λ
1

1−λ









X
λ

1−λ

t

W
1

1−λ
t









 

ℓt −
at

θξ
�

Kt

�

!

This last equation and (3.30) then solve Et .

Finally, given Et , Yt is solved from (3.19) using the above reasoning

Et
∫

0

Yi t di = Et

∞
∑

z=0





az
t

exp
�

−at

�

z !



Yt (z)

where Yt (z) satisfies Yt (z)≡ λ
λ

1−λσ(
λ

1−λ)z
�

X
λ

1−λ

t
/W

1
1−λ

t

�

�

ℓt − at/θξ
�

Kt

��

. �

Proof of Proposition 2:

The invention threshold simply follows from (A.2). The (symmetric) solution of at is at

boundary, i.e. at = 0, if

Λ





X t

Wt





Γ

−
1

θξ
�

Kt

� +Σℓt



< 0
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Since Λ> 0 and
�

X t/Wt

�Γ
> 0, this inequality implies

ξ
�

Kt

�

ℓt < (θΣ)
−1 =

h

θ
�

σ
λ

1−λ − 1
�i−1

The interior solution at = θξ
�

Kt

�

ℓt −
�

σ
λ

1−λ − 1
�−1

> 0 follows, again, from (A.2). �

Proof of Proposition 3:

As the proof of Lemma A.1 shows, the expected profit EΠi t in the unique SGE is equal

to Wtℓt . Hence, (A.1) and (A.4) imply the desired result given nw t = ni t = nt . Further-

more, since st is common across entrepreneurs and workers, we have bw t = bi t = bt =

nt/st . �

Proof of Proposition 4:

The existence and the uniqueness of period-t SGE and that the laws of motion for en-

dogenous state variables, i.e. (3.1), (3.13), (4.11) and (4.12), are all one-to-one functions

imply the existence and the uniqueness of the DGE for the entire history from t = 0 to

t →∞. �

Proof of Proposition 5:

First note that ℓt Et > 0 for all t implies Kt+1−Kt > 0 for all t . Next, it is assumed that

K t r
t
<∞. Thus the continuing growth of the stock Kt of useful discoveries eventually

makes the inventive activity optimal at some period t t r where Kt t r ≥K t r
t t r . �
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Appendix B

The Conditional Dynamical System

As noted earlier, the dynamical system of the model cannot be rewritten as a simple

autonomous system of normalized variables due to its severe non-linearity. A formal

discussion of global stability however is still feasible since the closed-form solution of

the model’s unique SGE allows us to study the qualitative properties of a conditional

dynamical system with a phase diagram. The modest purpose of this appendix is to show

why the asymptotic equilibrium is globally stable.

The conditional dynamical system to be considered, possibly the simplest among all,

is that of (X t , qt ) where we define qt as follows:

qt ≡
Nt

Kt

The asymptotic equilibrium on (X t , qt ) plane is now characterized by X t →∞ and qt →

0 for t →∞.

This system is conditional on endogenous state variables (Nt ,Kt ,X t ,XT t ) and exoge-

nous state variables (st ,ℓt ). For notational ease, define Zt ≡ (Nt ,Kt ,XT t , st ,ℓt ) as the

vector of state variables excluding X t . In what follows, the notation is slightly abused by

redefining some of the model variables as functions of Zt even if some elements of Zt do

not affect the variable in the question.

The first equation of the (X t , qt ) system governs X t and rewritten here as

X t+1

X t

= exp
�

(σ − 1)a(Zt )
�
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X t

qt

q̂t

0
0

X Xt

Figure B.1: The X Xt Set and the Dynamics of X t

where the arrival rate a(Zt ) is as in (4.1). On (Xt , qt ) plane, the set of vectors satisfying

X t+1 =X t is clearly

qt ≥ q̂t ≡ q̂(Zt )≡
Nt

K t r
t

=
Nt

ξ −1
�

θ−1
�

σ
λ

1−λ − 1
�−1

ℓ−1
t

� (XXt )

and X t grows wherever qt < q̂t , i.e. wherever, for any given value of adult population Nt ,

the stock of discoveries is sufficiently large (Kt > K t r
t
). Importantly, for any given value

of X t , q̂t is increasing in Nt and ℓt . Figure B.1 pictures the dynamics of X t regardless of

how qt changes in time.

The second equation of the system, the one that governs qt , reads

qt+1

qt

≡
Nt+1/Nt

Kt+1/Kt

=
n(Zt ,X t )

1+ωℓt e(Zt ,X t )qt

=
n(Zt ,X t )

1+ωℓt

�

f N M (Zt ,X t )−
ρn(Zt ,X t )

st ℓt

�

qt

where n(Zt ,X t ) = nt is the level of net fertility, e(Zt ,X t ) = Et/Nt is the share of en-
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trepreneurs in adult population, and f N M (Zt ,X t ) = 1− (NT t/Nt ) is the labor share of

the modern sector. The locus of vectors satisfying qt+1 = qt on (Xt , qt ) plane is thus

qt =
n(Zt ,X t )− 1

ωℓt

�

f N M (Zt ,X t )−
ρn(Zt ,X t )

stℓt

� (qqt )

As usual, the shape of qqt locus on (Xt , qt ) plane and the dynamics of qt below and

above this locus are of interest. Regarding the latter, we simply have ∂ (qt+1/qt )/∂ qt < 0

for all qt . Thus, qt increases wherever qt is below the qqt locus and it decreases otherwise.

The shape of the qqt locus is determined by f N M (Zt ,X t ) and n(Zt ,X t ). Regard-

ing the former, we know that f N M (Zt ,X t ) is a strictly increasing function of X t for

any (Zt ,X t ) due to the decline of the traditional sector with growing X t . Net fertility

n(Zt ,X t ), on the other hand, changes with X t non-monotonically since there exist three

regimes of net fertility determined by X t given Zt . These regimes are separated by two

thresholds of X t such that

∂ n(Zt ,X t )

∂ X t

> 0 if X t <
ˆ
X

I

t
≡





φ+ γ

ℓt (1−λ)
1−λλλδ

�

at ,Kt ,ℓt

�





1
λ

n(Zt ,X t ) = 1 if X t >
ˆ
X

I I

t
≡





φst −ψ

ρ(1−λ)1−λλλδ
�

at ,Kt ,ℓt

�





1
λ

∂ n(Zt ,X t )

∂ X t

< 0 if X t ∈
�

ˆ
X

I

t
,
ˆ
X

I I

t

�

For X t >
ˆ
X

I I

t
, the qqt locus is horizontal at qt = 0 since net fertility nt is equal to unity.

For X t ∈
�

ˆ
X

I

t
,
ˆ
X

I I

t

�

, the qqt locus is downward-sloping with decreasing n(Zt ,X t ) and

increasing f N M (Zt ,X t ) with respect to X t . For X t <
ˆ
X

I

t
, however, the shape of the qqt

locus remains ambiguous because n(Zt ,X t ) is increasing in X t in this case. The sign of
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X t

qt

0
0

qqt

qmax
t

ˆ
X

I

t

ˆ
X

I I

t

Figure B.2: The qqt Locus and the Dynamics of qt

the slope of the qqt locus is equal to the sign of

nX (Zt ,X t )
�

f N M (Zt ,X t )−ρ/stℓt

�

− f N M
X
(Zt ,X t )

�

n(Zt ,X t )− 1
�

⋛ 0

where nX (•,•) and f N M
X
(•,•) denote associated partial derivatives with respect to X t . An

inspection of second derivatives with respect to X t further indicates that there may exist

local maxima and local minima of qt for 0<X t <
ˆ
X

I

t
.

The ambiguity, fortunately, does not affect the global stability result. The reason, as

it shall become clear below, is that, for any 0<X t <
ˆ
X

I

t
, we have

n(Zt ,X t ) ∈
�

1,
φℓt st

ρ(φ+ γ )+ψℓt

�

and f N M (Zt ,X t ) ∈ (0,1]

These imply, together with the uniqueness of qt given (Zt ,X t ), that there exists a unique

global maximum qmax
t

< ∞ of the qqt locus for 0 < X t <
ˆ
X

I

t
regardless of its local
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X t

qt

0
0

qqt

qmax
t

ˆ
X

I

t

ˆ
X

I I

t

q̂t

0
0

X Xt

Figure B.3: The Convergence to the Asymptotic Equilibrium

maxima and local minima.

Figure B.2 pictures one possible characterization of the qqt locus and the associated

dynamics of qt . With the confidence following from the existence of unique qmax
t

which

is bounded above, the rest of the analysis is carried out with this possibility.

In Figure B.3, the X Xt set and the qqt locus are drawn together. Note that the fol-

lowing are subject to change in time due to the dependence on Zt :

• the X Xt set,

• the q̂t threshold,

• the qqt locus,

• the qmax
t

maximum,
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X t

qt

0
0

A

qqt

qmax
t

ˆ
X

I

t

ˆ
X

I I

t

q̂t

0
0

X Xt

Figure B.4: A Quasi-Static Equilibrium without Productivity Growth

• the
ˆ
X

I

t
and
ˆ
X

I I

t
thresholds.

The claim here is that, even though these elements of the conditional dynamical sys-

tem change in not easily predictable ways because of evolving Zt , q̂t becomes strictly

greater than qmax
t

, once and for all, at some finite t . To see why, notice that net fertility

nt is greater than unity for any X t that is less than
ˆ
X

I I

t
. This in turn implies that q̂t

grows, even for constant ℓt , as long as X t is sufficiently low. Put differently, the set X Xt

continuously moves upwards on (X t , qt ) plane along the trajectory towards the industrial

revolution.38 Once the system is characterized by q̂t > qmax
t

, it always moves towards the

asymptotic equilibrium of X t →∞ and qt → 0 because the qualitative properties of the

system remains unchanged. When X t passes its second threshold, nt = n⋆ = 1 lets q̂t

stabilize through Nt =N ⋆ and ℓt converging to unity.

In Figure B.4, a quasi-static equilibrium without productivity growth in the mod-

ern sector is pictured to provide more insight on the dynamic properties of the model.

38. Needless to say, assuming that the industrial revolution is possible implies q̂t > 0 for all t .
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Recalling the earlier characterization of the initial stagnation equilibrium, if it is again

assumed that st and ℓt are constant and that the exogenous productivity growth in the

traditional sector just matches the effect of slowly increasing population, the point A in

the figure represents a quasi-static equilibrium of the model. In this equilibrium, a knife-

edge relation is endogenously established between population growth and the growth of

the stock of useful discoveries, making qt+1 = qt . Since the labor share of the traditional

sector does not change in this equilibrium, the quasi-statis can be prolonged in calendar

time until the stock of useful discoveries, or, equivalently, the level of population given

constant qt , is sufficiently large to imply q̂t > qmax
t

.
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